In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as Note that should be the "raw" output of the classifier's decision function, not the predicted class label. For instance, in linear SVMs, , where are the parameters of the hyperplane and is the input variable(s). When t and y have the same sign (meaning y predicts the right class) and , the hinge loss . When they have opposite signs, increases linearly with y, and similarly if , even if it has the same sign (correct prediction, but not by enough margin). While binary SVMs are commonly extended to multiclass classification in a one-vs.-all or one-vs.-one fashion, it is also possible to extend the hinge loss itself for such an end. Several different variations of multiclass hinge loss have been proposed. For example, Crammer and Singer defined it for a linear classifier as Where is the target label, and are the model parameters. Weston and Watkins provided a similar definition, but with a sum rather than a max: In structured prediction, the hinge loss can be further extended to structured output spaces. Structured SVMs with margin rescaling use the following variant, where w denotes the SVM's parameters, y the SVM's predictions, φ the joint feature function, and Δ the Hamming loss: The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it. It is not differentiable, but has a subgradient with respect to model parameters w of a linear SVM with score function that is given by However, since the derivative of the hinge loss at is undefined, smoothed versions may be preferred for optimization, such as Rennie and Srebro's or the quadratically smoothed suggested by Zhang. The modified Huber loss is a special case of this loss function with , specifically .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.