La RMN du carbone 13 (13C ou parfois simplement appelée RMN du carbone) est l'application de la spectroscopie RMN du carbone. Il est analogue à la RMN du proton (RMN 1H) et permet l'identification des atomes de carbone dans une molécule organique comme la RMN du proton identifie des atomes d'hydrogène. Ainsi, la RMN du 13C est un outil important dans la détermination de la structure chimique en chimie organique. Seul l'isotope 13C du carbone de spin 1/2, dont l'abondance naturelle n'est que de 1,1 %, est détectable par RMN, alors que le principal isotope du carbone, 12C, a un spin nul.
La RMN du 13C a un certain nombre de complications qui ne sont pas rencontrées en RMN du proton. Notamment, la RMN du 13C est beaucoup moins sensible, puisque l'abondance naturelle est faible et que le carbone 13 est intrinsèquement moins sensible. Le nombre quantique de spin (spin) est de 1/2 (comme 1H). En outre, le rapport gyromagnétique est seulement 1/4 de celui du proton, ce qui réduit encore la sensibilité. La sensibilité relative à celle du proton est de 4 ordre de grandeur plus faible.
Une autre difficulté potentielle est la présence de fort couplage scalaire J avec les protons des hydrogènes liés (typiquement 100 à 250 Hz). Des techniques de découplage permettent cependant de supprimer les éclatements des résonances liées à ces couplages. Une fois ceci réalisé, les spectres de RMN du carbone 13, présentent des raies uniques puisque les couplages entre différents 13C sont pratiquement inexistants compte tenu de la faible abondance naturelle. Avec 1,1 % (0,011) d'abondance naturelle, la probabilité pour qu'un autre atome de 13C soit lié varie entre 1 et 4 fois 0,0112 soit entre 1,2 et 4,8 pour 10 000 !
Déplacements chimiques typiques du 13C
ImageSize = width:540 height:440
AlignBars = late
Colors =
id:nmrbar value:rgb(0.9,0.9,0.65)
id:gray value:rgb(0.85,0.85,0.