A field coil is an electromagnet used to generate a magnetic field in an electro-magnetic machine, typically a rotating electrical machine such as a motor or generator. It consists of a coil of wire through which a current flows.
In a rotating machine, the field coils are wound on an iron magnetic core which guides the magnetic field lines. The magnetic core is in two parts; a stator which is stationary, and a rotor, which rotates within it. The magnetic field lines pass in a continuous loop or magnetic circuit from the stator through the rotor and back through the stator again. The field coils may be on the stator or on the rotor.
The magnetic path is characterized by poles, locations at equal angles around the rotor at which the magnetic field lines pass from stator to rotor or vice versa. The stator (and rotor) are classified by the number of poles they have. Most arrangements use one field coil per pole. Some older or simpler arrangements use a single field coil with a pole at each end.
Although field coils are most commonly found in rotating machines, they are also used, although not always with the same terminology, in many other electromagnetic machines. These include simple electromagnets through to complex lab instruments such as mass spectrometers and NMR machines. Field coils were once widely used in loudspeakers before the general availability of lightweight permanent magnets.
Most DC field coils generate a constant, static field. Most three-phase AC field coils are used to generate a rotating field as part of an electric motor. Single-phase AC motors may follow either of these patterns: small motors are usually universal motors, like the brushed DC motor with a commutator, but run from AC. Larger AC motors are generally induction motors, whether these are three-phase or single-phase.
Many rotary electrical machines require current to be conveyed to (or extracted from) a moving rotor, usually by means of sliding contacts: a commutator or slip rings.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines
L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines
Magnetic resonance imaging (MRI) and spectroscopy (MRS) will be addressed in detail, along with experimental design, data gathering and processing on MRS, structural and functional MRI in humans and r
vignette|Rotor au centre relié à l'axe tournant, stator fixe externe. Le rotor en électrotechnique est la partie mobile, par rapport au stator, des machines électriques tournantes : machine à courant continu, machine synchrone, machine asynchrone Le rotor peut être un aimant qui lors de sa rotation induit un champ électrique dans les enroulements du stator du générateur/alternateur. Dans un moteur électrique, le courant passant dans les enroulements du rotor provoque un champ magnétique qui réagit avec celui permanent du stator pour faire tourner l'axe central.
vignette|Le stator d'un moteur électrique de ventilateur Le stator est la partie fixe d'une machine rotative. La partie rotative d'une machine, dite rotor, tourne normalement dans le stator. Des exemples de telles machines sont les pompes et les moteurs. Le stator d'une machine électrique est la partie stationnaire d'un moteur électrique ou d'un alternateur. Selon la configuration de la machine, le stator peut créer un champ magnétique qui par interaction avec le champ magnétique rotorique produit le couple électromécanique.
Une machine électrique est un dispositif électromécanique fondé sur l'électromagnétisme permettant la conversion d'énergie électrique par exemple en travail ou énergie mécanique. Ce processus est réversible et peut servir à produire de l'électricité : les machines électriques produisant de l'énergie électrique à partir d'une énergie mécanique sont communément appelées des génératrices, dynamos ou alternateurs suivant la technologie utilisée ; les machines électriques produisant une énergie mécanique à partir d'une énergie électrique sont communément appelées des moteurs.
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers underg ...
In this paper, an effective procedure for broken rotor bar (BRB) fault detection in a three-phase squirrel-cage induction machine (SCIM) is proposed. This approach relies on a motor current signature analysis (MCSA) by observing the specific fault-related ...
The modern world is heavily reliant on electromagnetic devices to convert mechanical energy into electrical energy and vice versa. These devices are fundamental to powering our society, and the growing need for automated production lines and electrified tr ...