Publications associées (30)

Machine Learning Security Against Data Poisoning: Are We There Yet?

Kathrin Grosse

Poisoning attacks compromise the training data utilized to train machine learning (ML) models, diminishing their overall performance, manipulating predictions on specific test samples, and implanting backdoors. This article thoughtfully explores these atta ...
Ieee Computer Soc2024

Evaluating, Exploiting, and Hiding Power Side-Channel Leakage of Remote FPGAs

Ognjen Glamocanin

The pervasive adoption of field-programmable gate arrays (FPGAs) in both cyber-physical systems and the cloud has raised many security issues. Being integrated circuits, FPGAs are susceptible to fault and power side-channel attacks, which require physical ...
EPFL2023

Data-driven and Safe Networked Control with Applications to Microgrids

Mustafa Sahin Turan

Today, automatic control is integrated into a wide spectrum of real-world systems such as electrical grids and transportation networks. Many of these systems comprise numerous interconnected agents, perform safety-critical operations, or generate large amo ...
EPFL2022

Safeguarding the IoT From Malware Epidemics: A Percolation Theory Approach

Ainur Zhaikhan

The upcoming Internet of Things (IoT) is foreseen to encompass massive numbers of connected devices, smart objects, and cyber-physical systems. Due to the large scale and massive deployment of devices, it is deemed infeasible to safeguard 100% of the devic ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Performance guarantees for greedy maximization of non-submodular controllability metrics

Maryam Kamgarpour, Tyler Summers

A key problem in emerging complex cyber-physical networks is the design of information and control topologies, including sensor and actuator selection and communication network design. These problems can be posed as combinatorial set function optimization ...
IEEE2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.