En physique, le système d'unités de Planck est un système d'unités de mesure défini uniquement à partir de constantes physiques fondamentales. Il a été nommé en référence à Max Planck, qui l'introduisit (partiellement) à la fin de l'article présentant la constante qui porte à présent son nom, la constante de Planck. C'est un système d'unités naturelles, dans le sens où une liste définie de constantes physiques fondamentales valent 1, lorsqu’elles sont exprimées dans ce système. Étant définies uniquement à partir de constantes physiques fondamentales, le choix de telles unités élimine l’arbitraire anthropocentrique associé au choix des unités fondamentales d'un système d’unités. Dans ce sens, il peut être considéré comme universel, et certains physiciens pensent que c'est le système d'unité qu'il faudrait utiliser pour tenter de communiquer avec une intelligence extra-terrestre. Le concept d'unités naturelles a été introduit en 1881, lorsque George Johnstone Stoney, notant que la charge électrique est quantifiée, a dérivé des unités de longueur, de temps et de masse, en normalisant à l'unité la constante gravitationnelle G, la vitesse de la lumière c, et la charge de l'électron. Ces unités sont à présent appelées unités Stoney en son honneur, mais ne sont pas utilisées en pratique. Max Planck a fait pour la première fois la liste de ses unités naturelles (et en a donné des valeurs remarquablement proches de celles que nous utilisons aujourd’hui) en mai 1899 dans un article présenté à l’Académie des sciences de Prusse. Au moment où il présenta ses unités, la mécanique quantique n’avait pas encore été découverte. Il n’avait pas encore découvert la théorie du rayonnement du corps noir (publiée pour la première fois en décembre 1900) dans laquelle la constante de Planck fit sa première apparition et pour laquelle Planck obtint plus tard le prix Nobel. Les parties importantes de l'article de 1899 comportaient quelques confusions sur la manière dont il a réussi à trouver les unités de temps, longueur, masse, température, etc.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
PHYS-207(a): General physics : quanta
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
PHYS-426: Quantum physics IV
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
Afficher plus
Séances de cours associées (34)
Approximation semi classique: Propagateur d'énergie fixe
Explore l'approximation semi-classique pour le propagateur d'énergie fixe en physique quantique, en mettant l'accent sur la pénétration de la barrière et les points de selle.
Énergie photonique et relation de longueur d'onde
Explore la relation énergie-longueur d'onde des photons et son application pratique.
Vue d'ensemble de la physique des particules et de la diffusion de Rutherford
Couvre les constituants de la matière, les forces fondamentales, le modèle standard, les unités naturelles et les expériences dinteraction des particules.
Afficher plus
Publications associées (47)

Scale invariant Einstein-Cartan gravity and flat space conformal symmetry

Georgios Karananas, Sebastian Zell

We find the conditions under which scale-invariant Einstein-Cartan gravity with scalar matter fields leads to an approximate conformal invariance of the flat space particle theory up to energies of the order of the Planck mass. In the minimal setup, these ...
New York2023
Afficher plus
Concepts associés (63)
Ensembles causaux
Les ensembles causaux (causal sets), ou théorie des ensembles causaux, est une théorie physique qui définit une approche de la gravitation quantique. Ses principes fondateurs sont que l'espace-temps est fondamentalement discret (une distribution de points d'un espace-temps discret, appelés les éléments d'ensemble causal) et que les évènements de l'espace-temps sont reliés par un ordre partiel. Cet ordre partiel possède la signification physique des relations causales des évènements de l'espace-temps.
Hypothèse des grands nombres de Dirac
L'hypothèse des grands nombres de Dirac se rapporte à une observation faite par Paul Dirac en 1937 concernant les rapports entre les échelles de taille de l'Univers et les échelles des particules élémentaires. C'est, historiquement, la première tentative de mettre en connexion deux domaines a priori très éloignés de la physique, à savoir la cosmologie et la physique des particules. L'observation de Dirac est que la cosmologie fait apparaître des grands nombres quand ses ordres de grandeur sont comparés à ceux du monde microscopique.
Trou noir virtuel
vignette|Désintégration d'un proton par un trou noir virtuel. Un trou noir virtuel est, en gravité quantique, un trou noir qui a une existence temporaire résultant d'une fluctuation quantique de l'espace-temps. Les trous noirs virtuels illustrent les phénomènes de mousse quantique et sont des analogues gravitationnels aux paires virtuelles électron-positron résultant de l'électrodynamique quantique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.