Résumé
In physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity. According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space. If one reference frame assigns precisely the same time to two events that are at different points in space, a reference frame that is moving relative to the first will generally assign different times to the two events (the only exception being when motion is exactly perpendicular to the line connecting the locations of both events). For example, a car crash in London and another in New York appearing to happen at the same time to an observer on Earth, will appear to have occurred at slightly different times to an observer on an airplane flying between London and New York. Furthermore, if the two events cannot be causally connected, depending on the state of motion, the crash in London may appear to occur first in a given frame, and the New York crash may appear to occur first in another. However, if the events are causally connected, precedence order is preserved in all frames of reference. History of special relativityHistory of Lorentz transformations and Lorentz ether theory In 1892 and 1895, Hendrik Lorentz used a mathematical method called "local time" t' = t – v x/c2 for explaining the negative aether drift experiments. However, Lorentz gave no physical explanation of this effect. This was done by Henri Poincaré who already emphasized in 1898 the conventional nature of simultaneity and who argued that it is convenient to postulate the constancy of the speed of light in all directions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
ENV-548: Sensor orientation
Determination of spatial orientation (i.e. position, velocity, attitude) via integration of inertial sensors with satellite positioning. Prerequisite for many applications related to remote sensing, e
MATH-530: Differential geometry IV - general relativity
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Séances de cours associées (19)
Relativité spéciale et générale
Couvre la relativité spéciale et générale, en discutant des équations de Maxwell, des symétries de Lorentz, de l'espace Minkowski, et de l'influence de la matière sur la géométrie espace-temps.
Relativité de la simultanéité et de la dilatation du temps
Explore la relativité de la simultanéité, la dilatation du temps et la contraction de la distance dans différents cadres de référence.
Les ondes gravitationnelles et la constante Hubble
Explore la mesure du Hubble Constant à l'aide d'ondes gravitationnelles et de la méthode standard de sirène.
Afficher plus
Publications associées (11)
Concepts associés (19)
Synchronisation d'Einstein
La 'synchronisation d'Einstein' (ou la synchronisation d'Einstein-Poincaré) est une convention de synchronisation d'horloges distantes et fixes dans un référentiel galiléen, au moyen d'échanges de signaux, dans le cadre de la relativité restreinte ou dans celui de la relativité générale. Deux horloges, identiques, distantes et immobiles dans un référentiel inertiel, sont dites synchronisées quand l'observateur, se plaçant à l'une qui marque le temps t, voit que l'autre affiche le temps t - dt où dt est le temps de transport de l'information entre les deux horloges (l'information parvenant à l'horloge au temps t est partie dt avant de l'autre horloge).
Contraction des longueurs
En relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.
Rapidité (relativité)
En relativité restreinte, la rapidité ou pseudo-vitesse est une mesure du mouvement. À faible vitesse, la rapidité et la vitesse sont égales (au coefficient multiplicateur c près), mais contrairement à la vitesse qui tend asymptotiquement vers la vitesse de la lumière, la rapidité continue à augmenter linéairement à l'infini. L'intérêt de la rapidité vient du fait que, de par son caractère linéaire, elle préserve la relation de la mécanique classique entre vitesse et accélération (un voyageur peut donc calculer sa rapidité en intégrant dans le temps, une mesure fournie par un accéléromètre).
Afficher plus