LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Négation par l'échecLa négation par l'échec (en anglais NAF pour negation as failure, ou NBF pour negation by failure) est une règle d'inférence non monotone en programmation logique, utilisée pour la dérivation de à partir de l'échec de la dérivation de . C'est une caractéristique importante de la programmation logique depuis les origines de Planner et de Prolog. En Prolog, la négation par l'échec est habituellement implémentée en utilisant les fonctionnalités non logiques du langage.
Answer set programmingL’answer set programming (ASP) est une forme de programmation déclarative adaptée aux problèmes de recherche combinatoires (par exemple, sudoku et coloration de graphes). Dans le contexte de la programmation logique, cette approche distingue deux types de négation — la négation par manque d'information, dite négation par défaut, et la négation forte ou négation logique. La négation par défaut permet de raisonner en l'absence d'information et rend l'ASP non monotone.
Révision des croyancesBelief revision is the process of changing beliefs to take into account a new piece of information. The logical formalization of belief revision is researched in philosophy, in databases, and in artificial intelligence for the design of rational agents. What makes belief revision non-trivial is that several different ways for performing this operation may be possible. For example, if the current knowledge includes the three facts " is true", " is true" and "if and are true then is true", the introduction of the new information " is false" can be done preserving consistency only by removing at least one of the three facts.
Autoepistemic logicThe autoepistemic logic is a formal logic for the representation and reasoning of knowledge about knowledge. While propositional logic can only express facts, autoepistemic logic can express knowledge and lack of knowledge about facts. The stable model semantics, which is used to give a semantics to logic programming with negation as failure, can be seen as a simplified form of autoepistemic logic. The syntax of autoepistemic logic extends that of propositional logic by a modal operator indicating knowledge: if is a formula, indicates that is known.
Sémantique des modèles stablesLa sémantique des modèles stables est une sémantique déclarative en programmation logique utilisant la négation par l'échec. C'est l'une des nombreuses approches standard pour la signification de la négation dans la programmation logique, au côté de la terminaison de programme et de la sémantique bien fondée. La sémantique du modèle stable est à la base du langage de programmation déclarative Answer Set Programming (ASP).
Logique probabilisteProbabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory.
Hypothèse du monde closLa notion d'hypothèse de monde clos est utilisée en particulier en Prolog, elle s'oppose à l'hypothèse de monde ouvert (voir aussi l'article Logique argumentative) et concerne la question du vrai et du faux. Elle signifie qu'un fait est considéré comme faux si, en un temps fini, on échoue à montrer qu'il est vrai, ce qui revient à dire que tout ce qui est vrai doit être connu (inclus dans la base de données des faits) ou démontrable en temps fini, il n’y a pas de monde extérieur qui pourrait contenir des éléments de preuve inconnus du programme.
Déduction logiqueLa déduction logique est un type de relation que l'on rencontre en logique mathématique. Elle relie des propositions dites prémisses à une proposition dite conclusion et préserve la vérité. Prémisses et conclusion qui sont ainsi reliées par une règle de déduction, assurent que si la règle est valide et si les prémisses sont vraies, la conclusion est elle aussi vraie. On dit alors que la conclusion est une conséquence des prémisses, ou parfois que la conclusion vient des prémisses.
ArgumentationL’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.