In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We ...
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...
We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation ...
We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdeter ...
In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time ...
We propose a graph signal processing framework to overcome the computational burden of Tensor Robust PCA (TRPCA). Our framework also serves as a convex alternative to graph regularized tensor factorization methods. Our method is based on projecting a tenso ...
PurposeMagnetic resonance imaging (MRI) artifacts are originated from various sources including instability of an magnetic resonance (MR) system, patient motion, inhomogeneities of gradient fields, and so on. Such MRI artifacts are usually considered as ir ...
This paper argues that randomized linear sketching is a natural tool for on-the-fly compression of data matrices that arise from large-scale scientific simulations and data collection. The technical contribution consists in a new algorithm for constructing ...
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises proble ...