In mathematics, an antiunitary transformation, is a bijective antilinear map between two complex Hilbert spaces such that for all and in , where the horizontal bar represents the complex conjugate. If additionally one has then is called an antiunitary operator. Antiunitary operators are important in quantum theory because they are used to represent certain symmetries, such as time reversal. Their fundamental importance in quantum physics is further demonstrated by Wigner's theorem. In quantum mechanics, the invariance transformations of complex Hilbert space leave the absolute value of scalar product invariant: for all and in . Due to Wigner's theorem these transformations can either be unitary or antiunitary. Congruences of the plane form two distinct classes. The first conserves the orientation and is generated by translations and rotations. The second does not conserve the orientation and is obtained from the first class by applying a reflection. On the complex plane these two classes correspond (up to translation) to unitaries and antiunitaries, respectively. holds for all elements of the Hilbert space and an antiunitary . When is antiunitary then is unitary. This follows from For unitary operator the operator , where is complex conjugate operator, is antiunitary. The reverse is also true, for antiunitary the operator is unitary. For antiunitary the definition of the adjoint operator is changed to compensate the complex conjugation, becoming The adjoint of an antiunitary is also antiunitary and (This is not to be confused with the definition of unitary operators, as the antiunitary operator is not complex linear.) The complex conjugate operator is an antiunitary operator on the complex plane. The operator where is the second Pauli matrix and is the complex conjugate operator, is antiunitary. It satisfies . An antiunitary operator on a finite-dimensional space may be decomposed as a direct sum of elementary Wigner antiunitaries , . The operator is just simple complex conjugation on For , the operator acts on two-dimensional complex Hilbert space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.