Résumé
An eigenface (ˈaɪgənˌfeɪs) is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set. The eigenface approach began with a search for a low-dimensional representation of face images. Sirovich and Kirby showed that principal component analysis could be used on a collection of face images to form a set of basis features. These basis images, known as eigenpictures, could be linearly combined to reconstruct images in the original training set. If the training set consists of M images, principal component analysis could form a basis set of N images, where N < M. The reconstruction error is reduced by increasing the number of eigenpictures; however, the number needed is always chosen less than M. For example, if you need to generate a number of N eigenfaces for a training set of M face images, you can say that each face image can be made up of "proportions" of all the K "features" or eigenfaces: Face image1 = (23% of E1) + (2% of E2) + (51% of E3) + ... + (1% En). In 1991 M. Turk and A. Pentland expanded these results and presented the eigenface method of face recognition. In addition to designing a system for automated face recognition using eigenfaces, they showed a way of calculating the eigenvectors of a covariance matrix such that computers of the time could perform eigen-decomposition on a large number of face images.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
Séances de cours associées (7)
Analyse de la composante principale: Eigenfaces
Couvre l'application de l'analyse en composantes principales dans la reconnaissance faciale à l'aide d'un ensemble de données de visages célèbres.
Regroupement: K-means & LDA
Couvre le clustering en utilisant les propriétés K-means et LDA, PCA, K-means, Fisher LDA et le clustering spectral.
Forme à partir de Stereo-2
Explore les concepts de vision stéréoscopique tels que les occlusions, l'impact de la taille de la fenêtre, la stéréo multivue, la reconstruction dynamique de la forme et la segmentation basée sur des graphiques.
Afficher plus
Publications associées (25)

Second-order adjoint-based sensitivity for hydrodynamic stability and control

Edouard Boujo

Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i. ...
CAMBRIDGE UNIV PRESS2021
Afficher plus
Concepts associés (3)
Système de reconnaissance faciale
Un système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Analyse discriminante linéaire
En statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Reconnaissance de formes
thumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.