Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
An eigenface (ˈaɪgənˌfeɪs) is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set. The eigenface approach began with a search for a low-dimensional representation of face images. Sirovich and Kirby showed that principal component analysis could be used on a collection of face images to form a set of basis features. These basis images, known as eigenpictures, could be linearly combined to reconstruct images in the original training set. If the training set consists of M images, principal component analysis could form a basis set of N images, where N < M. The reconstruction error is reduced by increasing the number of eigenpictures; however, the number needed is always chosen less than M. For example, if you need to generate a number of N eigenfaces for a training set of M face images, you can say that each face image can be made up of "proportions" of all the K "features" or eigenfaces: Face image1 = (23% of E1) + (2% of E2) + (51% of E3) + ... + (1% En). In 1991 M. Turk and A. Pentland expanded these results and presented the eigenface method of face recognition. In addition to designing a system for automated face recognition using eigenfaces, they showed a way of calculating the eigenvectors of a covariance matrix such that computers of the time could perform eigen-decomposition on a large number of face images.
Jean-Philippe Thiran, Yves Wiaux, Vijay Kartik, Ming Jiang