Un système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique. Le fonctionnement de ces systèmes se base sur une ou plusieurs caméras pour reconnaître l'utilisateur. Ces systèmes peuvent également être utilisés dans le but de faciliter la vie de l'utilisateur, comme le font par exemple certains réseaux sociaux sur internet (Facebook, Google+) ou certaines applications mobiles (NameTag, FaceRec) pour identifier des visages sur des images. Ces systèmes se basent alors sur des photos et/ou vidéos d'une ou plusieurs personnes. La détection de visage, qui consiste à repérer qu'un visage est présent sur une image, est l'une des possibles phases techniques de la reconnaissance faciale. L'une des premières tentatives de reconnaissance faciale est faite par Takeo Kanade en 1973 lors de sa thèse de doctorat à l'Université de Kyoto. Le , Facebook lance un service de reconnaissance faciale accessible à tous. Celui-ci a été vivement critiqué par un bon nombre d'associations de protection de la vie privée et du droit à l'oubli. Sous cette pression, Facebook a dû abandonner ce service le en Europe. Un autre projet de reconnaissance de visage, appelé DeepFace, développé par le groupe de recherche de Facebook a également commencé à voir le jour début 2015. Cet outil a pour but de reconnaître un visage, quelle que soit son orientation, ainsi que d'y associer une personne. DeepFace permet donc de faire correspondre un très grand nombre de photos différentes d'une même personne, même si celle-ci n'est pas identifiée explicitement.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
COM-516: Markov chains and algorithmic applications
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
CS-523: Advanced topics on privacy enhancing technologies
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
Afficher plus
Séances de cours associées (39)
Image Processing II: Propriétés et applications du KLT
Explore les propriétés et les applications de la transformation de Karhunen-Loève dans le traitement de l'image.
Analyse de la composante principale: Eigenfaces
Couvre l'application de l'analyse en composantes principales dans la reconnaissance faciale à l'aide d'un ensemble de données de visages célèbres.
Projet de programmation : Reconnaissance d'image
Explique la reconnaissance d'image dans LabVIEW, en se concentrant sur la lecture des paramètres et la reconnaissance des chiffres.
Afficher plus
Concepts associés (32)
Informatique affective
L’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Eigenface
Les eigenfaces sont un ensemble de vecteurs propres utilisés dans le domaine de la vision artificielle afin de résoudre le problème de la reconnaissance du visage humain. Le recours à des eigenfaces pour la reconnaissance a été développé par Sirovich et Kirby (1987) et utilisé par Matthew Turk et Alex Pentland pour la classification de visages. Cette méthode est considérée comme le premier exemple réussi de technologie de reconnaissance faciale.
Afficher plus
MOOCs associés (23)
Introduction to Discrete Choice Models
The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Afficher plus