Saveur (physique)La saveur, en physique des particules, est une caractéristique permettant de distinguer différents types de leptons et de quarks, deux sous-familles des fermions. Les leptons se déclinent en trois saveurs et les quarks en six saveurs. Les saveurs permettent de distinguer certaines classes de particules dont les autres propriétés (charge électrique, interactivité) sont similaires. Les dénominations des saveurs ont été introduites par Murray Gell-Mann, baptisant le quark étrange lors de la détection du kaon en 1964.
Pentaquarkvignette|Schéma d'un pentaquark générique : quatre quarks et un antiquark (en jaune). Un pentaquark est une particule subatomique composée de cinq quarks qui a été prévue par les théoriciens en 1997. La recherche des pentaquarks (et des tétraquarks) est devenue un sujet d’étude à part entière en physique expérimentale, et plusieurs pentaquarks ont été produits au LHC, de type cqqq. L'existence des pentaquarks fut prédite initialement par Maxim Polyakov, et Victor Petrov de l' en 1997 ; mais leur théorie fut accueillie avec scepticisme.
Boson de Higgsthumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Chiral anomalyIn theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation").
Quark modelIn particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date.
IsospinEn physique nucléaire et en physique des particules, l'isospin (I) est un nombre quantique dans le domaine de l’interaction forte. Plus précisément, la symétrie d'isospin est un sous-ensemble de la symétrie de saveur vue plus largement dans les interactions des baryons et des mésons. Le nom de ce concept contient le terme spin parce que sa description quantique est mathématiquement similaire au moment cinétique (en particulier dans la manière dont il est couplé, par exemple, une paire de proton-neutron peut être couplée soit dans un état d'isospin 1 ou 0).
Hypercharge faibleL' est, en physique des particules, un nombre quantique correspond à deux fois la différence entre la charge électrique et l'isospin faible. C'est le générateur du composant U(1) du groupe de jauge électrofaible, SU(2)xU(1). Dans une relation semblable à la formule de Gell-Mann–Nishijima, on a : où Q est la charge électrique (dans les unités de la charge élémentaire), Tz est l'isospin faible, et YW est l'hypercharge faible.
Charge (physique)thumb|Exemple de charge atomique : ici un atome d'hélium. Ses deux protons (bleu) et ses deux neutrons (rouge) forment son noyau ; deux électrons orbitant (sinusoïdes) complètent sa charge. En physique, une charge peut faire référence à différentes quantités, telle que la charge électrique en électromagnétisme ou la charge de couleur en chromodynamique quantique. Les charges sont associées aux nombres quantiques conservés. D'une façon plus abstraite, une charge est un générateur quelconque d'une symétrie continue du système physique étudié.
MatièreEn physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'espace. Les quatre états les plus communs sont l'état solide, l'état liquide, l'état gazeux et l'état plasma. Réciproquement, en physique, tout ce qui a une masse est de la matière. La matière ordinaire qui nous entoure est formée principalement de baryons et constitue la matière baryonique.
Hadron exotiquevignette|Exemple de pentaquark : quatre quarks, un antiquark (en jaune) et des gluons (ligne ondulées). Les hadrons exotiques sont des particules subatomiques constituées de quarks (et probablement de gluons), mais qui ne s'insèrent pas dans le schéma habituel des hadrons. Bien que sensibles à l'interaction forte, ils ne sont pas prévus par le . Les hadrons exotiques n'ont en effet pas le même contenu en quarks que les hadrons ordinaires : les baryons exotiques ont plus de quarks que les trois qui constituent les baryons ordinaires, et les mésons exotiques n'ont pas un quark et un antiquark comme les mésons ordinaires.