En mathématiques, et plus précisément en analyse convexe, le cône asymptotique d'un convexe fermé non vide d'un espace vectoriel est l'aspect qu'il prend lorsqu'on le voit d'infiniment loin (la définition précise est donnée ci-dessous) ; il ressemble alors à un cône. Cette description intuitive permet de « comprendre » pourquoi le cône asymptotique est réduit à un point si, et seulement si, le convexe auquel il est associé est borné. Un élément du cône asymptotique est appelé une direction asymptotique de l'ensemble convexe de départ. Lorsqu'on suit une direction asymptotique, en partant d'un point d'un convexe fermé non vide, on reste dans cet ensemble. Certains auteurs préfèrent utiliser les appellations cône de récession et direction de récession à cône asymptotique et direction asymptotique, parce que la notion n'a pas de rapport direct avec celle d'asymptote. Le qualificatif asymptotique est en réalité utilisé ici comme dans la locution comportement asymptotique, comme un substitut de l'expression à l'infini. Voici quelques cas où ce concept peut être utile. Comme signalé ci-dessus, on peut montrer qu'un convexe fermé non vide est borné si, et seulement si, son cône asymptotique est réduit à zéro, ce qui revient à dire qu'il ne contient pas de demi-droite. Cette propriété de bornitude pourra donc être obtenue par l'intermédiaire du calcul et de l'examen de son cône asymptotique, souvent possible si l'ensemble convexe a lui-même une expression analytique. Appliqué aux ensembles de sous-niveaux d'une fonction convexe, cette méthode peut parfois donner des conditions pour que l'ensemble des minimiseurs de cette fonction soit non vide et borné. Le concept intervient aussi dans des conditions pour pouvoir séparer des convexes, pour que la somme de deux convexes fermés soit fermée, pour que l'image linéaire (en particulier la projection) d'un convexe fermé soit fermée Ce concept peut être transporté à une fonction convexe, en prenant le cône asymptotique de son épigraphe.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.