Concept

Ogive

Résumé
An ogive (ˈoʊdʒaɪv ) is the roundly tapered end of a two-dimensional or three-dimensional object. Ogive curves and surfaces are used in engineering, architecture and woodworking. The earliest use of the word ogive is found in the 13th-century sketchbook of Villard de Honnecourt, from Picardy in northern France. The Oxford English Dictionary considers the French term's origin obscure; it might come from the Late Latin obviata, the feminine perfect passive participle of obviare, meaning the one who has met or encountered the other. However, Merriam-Webster's dictionary says it is from the "Middle English oggif stone comprising an arch, from Middle French augive, ogive diagonal arch". In ballistics or aerodynamics, an ogive is a pointed, curved surface mainly used to form the approximately streamlined nose of a bullet or other projectile, reducing air resistance or the drag of air. In fact the French word ogive can be translated as "nose cone" or "warhead". The traditional or secant ogive is a surface of revolution of the same curve that forms a Gothic arch; that is, a circular arc, of greater radius than the diameter of the cylindrical section ("shank"), is drawn from the edge of the shank until it intercepts the axis. If this arc is drawn so that it meets the shank at zero angle (that is, the distance of the centre of the arc from the axis, plus the radius of the shank, equals the radius of the arc), then it is called a tangent or spitzer ogive. This is a very common ogive for high velocity (supersonic) rifle bullets. The sharpness of this ogive is expressed by the ratio of its radius to the diameter of the cylinder; a value of one half being a hemispherical dome, and larger values being progressively more pointed. Values of 4 to 10 are commonly used in rifle bullets, with 6 being the most common. Another common ogive for bullets is the elliptical ogive. This is a curve very similar to the spitzer ogive, except that the circular arc is replaced by an ellipse defined in such a way that it meets the axis at exactly 90°.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.