Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Fusion du siliciumEn astrophysique, la fusion du silicium (parfois appelée improprement combustion du silicium) est une phase de fusion nucléaire de quelques semaines (typiquement une à trois semaines) de la fin de vie d'une étoile d'au moins 8 masses solaires. Cette phase commence lorsque ces étoiles ont épuisé tous les combustibles de la séquence principale du diagramme de Hertzsprung-Russell (hydrogène, hélium, carbone, néon, oxygène, magnésium...), ce qui contracte leur cœur jusqu'à le porter à une température de 2,7 à 3,5 GK — la température dépendant de la masse de l'étoile.
FermiumLe fermium est l'élément chimique de numéro atomique 100, de symbole Fm. Il est nommé en l'honneur du physicien italien Enrico Fermi. C'est un élément métallique transuranien hautement radioactif qui fait partie des actinides. Il est produit lors du bombardement de plutonium avec des neutrons. Seule une petite quantité de cet élément a été synthétisée. De ce fait, on ne sait encore que peu de choses de ses propriétés chimiques. Isotopes du fermium À ce jour, on a découvert vingt isotopes.
Réaction triple alphavignette|Vue schématique d'une réaction triple alpha. En astrophysique, la réaction triple alpha désigne un ensemble de réactions de fusion nucléaire convertissant trois particules α (noyaux d') en noyau de carbone. Les étoiles âgées accumulent de l'hélium en leur cœur comme produit de la chaîne proton-proton. Alors que cet hélium s'accumule, il tend à fusionner avec d'autres noyaux d'hydrogène (protons) ou d'hélium (particules α) pour produire des nucléides très instables qui se désintègrent instantanément en noyaux plus petits.
PlutoniumLe plutonium est l'élément chimique de symbole Pu et de numéro atomique 94. C'est un métal radioactif transuranien de la famille des actinides. Il se présente sous la forme d'un solide cristallisé dont les surfaces fraîches sont gris argenté mais se couvrent en quelques minutes, en présence d'humidité, d'une couche terne de couleur grise, tirant parfois sur le vert olive, constituée d'oxydes et d'hydrures ; l'accroissement de volume qui en résulte peut atteindre 70 % d'un bloc de plutonium pur, et la substance ainsi formée tend à se désagréger en une poudre pyrophorique.
NucléosynthèseLa nucléosynthèse est la synthèse de noyaux atomiques par différentes réactions nucléaires (capture de neutrons ou de protons, fusion nucléaire, fission nucléaire, spallation), éventuellement suivies de désintégrations radioactives ou de fission spontanée. vignette|500x500px|Tableau périodique indiquant l'origine cosmogénique de chaque élément dans le Système solaire. Légende :En bleu : élément produit lors de la nucléosynthèse primordiale.En vert : élément produit par les étoiles de faibles masses en fin de vie.
Capture neutroniqueEn physique nucléaire, la capture neutronique est le processus par lequel un noyau capture un neutron sans se désintégrer (et émet un rayonnement gamma pour évacuer l'énergie en excès). Ils fusionnent pour former un noyau plus lourd. Comme les neutrons n'ont pas de charge électrique, ils peuvent entrer dans un noyau plus facilement que les particules chargées positivement, qui sont repoussées électrostatiquement. La capture de neutrons joue un rôle important dans la nucléosynthèse cosmique des éléments lourds.
Nucléosynthèse stellaireLa nucléosynthèse stellaire est le terme utilisé en astrophysique pour désigner l'ensemble des réactions nucléaires qui se produisent à l'intérieur des étoiles (fusion nucléaire et processus s) ou pendant leur destruction explosive (processus r, p, rp) et dont le résultat est la synthèse de la plupart des noyaux atomiques. La position d'une étoile sur le diagramme de Hertzsprung-Russell détermine en grande partie les éléments qu'elle synthétise. L'origine des éléments a posé un problème difficile aux scientifiques pendant longtemps.
Processus sLe processus s est un ensemble de processus astrophysiques conduisant à la nucléosynthèse stellaire d'environ la moitié des éléments chimiques de numéro atomique supérieur à celui du fer, l'autre moitié étant produite par le et le . La lettre s signifie qu'il s'agit d'une capture neutronique lente (slow en anglais). Le se déroule typiquement dans les étoiles de la branche asymptotique des géantes en impliquant des températures et des flux de neutrons considérablement moindres que ceux nécessaires au , lequel se déroule lors des fusions d'étoiles à neutrons et dans les supernovae à effondrement de cœur.
Fusion nucléairevignette|Le Soleil est une étoile de la séquence principale, dont l'énergie provient de la fusion nucléaire de noyaux d'hydrogène en hélium. En son cœur, le Soleil fusionne de tonnes d'hydrogène chaque seconde. La fusion nucléaire (ou thermonucléaire) est une réaction nucléaire dans laquelle deux noyaux atomiques s’assemblent pour former un noyau plus lourd. Cette réaction est à l’œuvre de manière naturelle dans le Soleil et la plupart des étoiles de l'Univers, dans lesquelles sont créés tous les éléments chimiques autres que l'hydrogène et la majeure partie de l'hélium.