Concept

# Matrix completion

Résumé
Matrix completion is the task of filling in the missing entries of a partially observed matrix, which is equivalent to performing data imputation in statistics. A wide range of datasets are naturally organized in matrix form. One example is the movie-ratings matrix, as appears in the Netflix problem: Given a ratings matrix in which each entry represents the rating of movie by customer , if customer has watched movie and is otherwise missing, we would like to predict the remaining entries in order to make good recommendations to customers on what to watch next. Another example is the document-term matrix: The frequencies of words used in a collection of documents can be represented as a matrix, where each entry corresponds to the number of times the associated term appears in the indicated document. Without any restrictions on the number of degrees of freedom in the completed matrix this problem is underdetermined since the hidden entries could be assigned arbitrary values. Thus we require some assumption on the matrix to create a well-posed problem, such as assuming it has maximal determinant, is positive definite, or is low-rank. For example, one may assume the matrix has low-rank structure, and then seek to find the lowest rank matrix or, if the rank of the completed matrix is known, a matrix of rank that matches the known entries. The illustration shows that a partially revealed rank-1 matrix (on the left) can be completed with zero-error (on the right) since all the rows with missing entries should be the same as the third row. In the case of the Netflix problem the ratings matrix is expected to be low-rank since user preferences can often be described by a few factors, such as the movie genre and time of release. Other applications include computer vision, where missing pixels in images need to be reconstructed, detecting the global positioning of sensors in a network from partial distance information, and multiclass learning.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés

Chargement