Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le traitement de flux de données avec Apache Kafka et Spark, y compris le temps d'événement vs le temps de traitement, les opérations de traitement de flux, et les jointures de flux.
Explore la qualité des données dans l'analyse du cycle de vie, couvrant le format de l'inventaire, le contrôle, les procédures de mesure, les facteurs d'incertitude et le système d'évaluation de la qualité des données.
Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Explore les défis de l'informatique distribuée, de la croissance des données et des types de données, en mettant l'accent sur la bataille contre les trois V dans le Big Data.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.