Concept

Epigenetics in learning and memory

Résumé
While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking (chemical modification) of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications (methylation, acetylation, and deacetylation) have been shown to play an important role in learning and memory. DNA methylation involves the addition of a methyl group to a 5' cytosine residue. This usually occurs at cytosines that form part of a cytosine-guanine dinucleotide (CpG sites). Methylation can lead to activation or repression of gene transcription and is mediated through the activity of DNA methyltransferases (DNMTs). DNMT3A and DNMT3B regulate de novo methylation of CpG sites, while DNMT1 maintains established methylation patterns. S-adenosyl methionine acts as the methyl donor. One current hypothesis for how DNA methylation contributes to the storage of memories is that dynamic DNA methylation changes occur temporally to activate transcription of genes that encode for proteins whose role is to stabilize memory. Another hypothesis is that changes in DNA methylation that occur even early in life can persist through adulthood, affecting how genes are able to be activated in response to different environmental cues. The first demonstration about the role of epigenetics in learning in memory was the landmark work of Szyf and Meaney (PMID 15220929) where they showed that licking and grooming by mother rats (maternal care) prevented methylation of the glucocorticoid receptor gene. When these pups become adults, they respond better to stressors than rats who, as pups, were not licked and groomed by their mothers and instead had a buildup of methylation in the glucocorticoid receptor gene.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.