Résumé
The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e. at ) provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples (i.e. carried out at zero pore pressure). Karl von Terzaghi first proposed the relationship for effective stress in 1925. For him, the term "effective" meant the calculated stress that was effective in moving soil, or causing displacements. It has been often interpreted as the average stress carried by the soil skeleton. Afterwards, different formulations have been proposed for the effective stress. Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity. Alec Skempton in his work in 1960, has carried out an extensive review of available formulations and experimental data in literature about effective stress valid in soil, concrete and rock, in order to reject some of these expressions, as well as clarify what expression was appropriate according to several work hypotheses, such as stress–strain or strength behaviour, saturated or nonsaturated media, rock/concrete or soil behaviour, etc.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (3)
Personnes associées (2)
Concepts associés (6)
Sable
thumbnail|right|Dunes de la vallée de la Mort en Californie. vignette|Les charroyeurs de sable Stanislao Pointeau 1861. vignette|La Seine à Port-Marly, tas de sable par Alfred Sisley (1875), Chicago, Art Institute of Chicago. Le sable est une matière solide granulaire constituée de petites particules provenant de la désagrégation de matériaux d'origine minérale (essentiellement des roches) ou organique (coquilles, squelettes de coraux) dont la dimension est comprise entre (limon) et (gravier) selon la définition des matériaux granulaires en géologie.
Effective stress
The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e. at ) provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid.
Mécanique des sols
La mécanique des sols est la plus ancienne, la plus connue et la plus pratiquée des branches de la géomécanique, discipline mathématique de la géotechnique, pour l’étude du comportement théorique des formations détritiques meubles de la couverture terrestre, sous l’action d’efforts naturels d’érosion (glissements de terrain...), ou induits lors de la construction de la plupart des ouvrages du BTP (terrassements, fondations, drainage...). Les « sols » de cette mécanique - mélanges divers et variés d’argiles, sables, graves.
Afficher plus
Cours associés (7)
CIVIL-423: Computational geomechanics
The goal of this course is to introduce the student to modern numerical methods for the solution of coupled & non-linear problems arising in geo-mechanics / geotechnical engineering.
CIVIL-203: Soil mechanics and Groundwater seepage
Le cours donne les bases de la mécanique des sols et des écoulements souterrains. Il aborde les notions de caractérisation expérimentale des sols, les principales théories pour les relations constitut
CIVIL-308: Rock mechanics
Les étudiants comprennent le comportement mécanique de la roche intacte, des joints et des massifs rocheux et savent déterminer les facteurs influençant un projet. Ils savent utiliser les méthodes app
Afficher plus