Summary
The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e. at ) provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples (i.e. carried out at zero pore pressure). Karl von Terzaghi first proposed the relationship for effective stress in 1925. For him, the term "effective" meant the calculated stress that was effective in moving soil, or causing displacements. It has been often interpreted as the average stress carried by the soil skeleton. Afterwards, different formulations have been proposed for the effective stress. Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity. Alec Skempton in his work in 1960, has carried out an extensive review of available formulations and experimental data in literature about effective stress valid in soil, concrete and rock, in order to reject some of these expressions, as well as clarify what expression was appropriate according to several work hypotheses, such as stress–strain or strength behaviour, saturated or nonsaturated media, rock/concrete or soil behaviour, etc.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.