Concept

Pronormal subgroup

In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, . A subgroup is pronormal if each of its conjugates is conjugate to it already in the subgroup generated by it and its conjugate. That is, H is pronormal in G if for every g in G, there is some k in the subgroup generated by H and Hg such that Hk = Hg. (Here Hg denotes the conjugate subgroup gHg-1.) Here are some relations with other subgroup properties: Every normal subgroup is pronormal. Every Sylow subgroup is pronormal. Every pronormal subnormal subgroup is normal. Every abnormal subgroup is pronormal. Every pronormal subgroup is weakly pronormal, that is, it has the Frattini property. Every pronormal subgroup is paranormal, and hence polynormal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.