Concept

Sous-groupe normal

Résumé
En théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G. Les sous-groupes normaux connaissent des applications en géométrie dans l'étude des actions de groupes, en topologie algébrique dans la classification des revêtements, en théorie de Galois dans la correspondance de Galois. Définition On dit qu'un sous-groupe H d'un groupe G est normal (ou distingué ou invariant) dans G s'il est stable par conjugaison, c'
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (17)

Chargement

Chargement

Chargement

Afficher plus
Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement