In imaging spectroscopy (also hyperspectral imaging or spectral imaging) each pixel of an image acquires many bands of light intensity data from the spectrum, instead of just the three bands of the RGB color model. More precisely, it is the simultaneous acquisition of spatially in many spectrally contiguous bands. Some spectral images contain only a few s of a spectral data cube, while others are better thought of as full spectra at every location in the image. For example, solar physicists use the spectroheliograph to make images of the Sun built up by scanning the slit of a spectrograph, to study the behavior of surface features on the Sun; such a spectroheliogram may have a spectral resolution of over 100,000 () and be used to measure local motion (via the Doppler shift) and even the magnetic field (via the Zeeman splitting or Hanle effect) at each location in the image plane. The s collected by the Opportunity rover, in contrast, have only four wavelength bands and hence are only a little more than 3-color images. One application is spectral geophysical imaging, which allows quantitative and qualitative characterization of the surface and of the atmosphere, using radiometric measurements. These measurements can then be used for unambiguous direct and indirect identification of surface materials and atmospheric trace gases, the measurement of their relative concentrations, subsequently the assignment of the proportional contribution of mixed pixel signals (e.g., the spectral unmixing problem), the derivation of their spatial distribution (mapping problem), and finally their study over time (multi-temporal analysis). The Moon Mineralogy Mapper on Chandrayaan-1 was a geophysical imaging spectrometer. In 1704, Sir Isaac Newton demonstrated that white light could be split up into component colours. The subsequent history of spectroscopy led to precise measurements and provided the empirical foundations for atomic and molecular physics (Born & Wolf, 1999).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
ENV-341: Remote sensing
Ce cours a pour objectif de familiariser les étudiants avec les principaux concepts, instruments et techniques de la télédétection environnementale. Les interactions ondes/matière, les différents type
BIO-695: Image Processing for Life Science
Registration details will be announced via email. It takes place yearly from Sept./October to December & intends to teach image processing with a strong emphasis of applications in life sciences. The
MICRO-504: Photonic micro- and nanosystems
This course aims at providing engineering and design guidelines for selected Photonic Micro- and Nanosystems. In particular, Optical MEMS and Integrated Photonics are reviewed. Standard fabrication pr
Séances de cours associées (13)
Fluorescence en microscopie: introduction et techniques d'étiquetage
Couvre l'introduction à la fluorescence en microscopie, les techniques de marquage, la spécificité des marqueurs, l'imagerie multicolore et les facteurs affectant les propriétés de fluorescence.
Applications géomatiques et techniques de surveillance
Explore les applications géomatiques, le balayage laser, la modélisation 3D et l'imagerie hyperspectrale pour l'analyse de la végétation et la surveillance des zones instables.
Filtres optiques : comprendre les propriétés et la sélection
Explique l'importance de comprendre les propriétés du filtre optique et de sélectionner les combinaisons appropriées pour la microscopie à fluorescence.
Afficher plus
Publications associées (51)

The multimodality cell segmentation challenge: toward universal solutions

Sahand Jamal Rahi, Vojislav Gligorovski, Marco Labagnara, Jun Ma, Xin Yang, Maxime Emmanuel Scheder, Yao Zhang, Bo Wang, Yixin Wang, Lin Han

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimen ...
Nature Portfolio2024

Validation of 2D T e and n e measurements made with Helium imaging spectroscopy in the volume of the TCV divertor

Basil Duval, Patrick Blanchard, Holger Reimerdes, Christian Gabriel Theiler, Artur Perek, Sophie Danielle Angelica Gorno, Claudia Colandrea, Dmytry Mykytchuk, Cedric Kar-Wai Tsui, Hugo De Oliveira, Filippo Bagnato, Lorenzo Martinelli, Nicola Offeddu

Multi-spectral imaging of helium atomic emission (HeMSI) has been used to create 2D poloidal maps of T-e and ne in TCV's divertor. To achieve these measurements, TCV's MANTIS multispectral cameras (Perek et al 2019 Rev. Sci. Instrum. 90 123514) simultaneou ...
2023

Importance of 3D radiative transfer effects on high-resolution NO2 remote sensing in cities

Marc Damien Schwärzel

Urban air quality is a major concern in the context of human health since cities are at the same time emission hot spots and home to a large fraction of the world's population. Airborne imaging spectrometers may be a valuable addition to traditional air po ...
EPFL2022
Afficher plus
Concepts associés (2)
Spectral imaging
Spectral imaging is imaging that uses multiple bands across the electromagnetic spectrum. While an ordinary camera captures light across three wavelength bands in the visible spectrum, red, green, and blue (RGB), spectral imaging encompasses a wide variety of techniques that go beyond RGB. Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above.
Imagerie hyperspectrale
vignette|Projection bi-dimensionnelle d'une image hyperspectrale d'une région de la Terre prise depuis l'espace. vignette|Image hyperspectrale de plusieurs pierres permettant d'identifier les éléments qui les composent. vignette|L'imagerie hyperspectrale comparée à l'imagerie spectrale. vignette|Les différentes techniques d'acquisition d'une image hyperspectrale. L'imagerie hyperspectrale ou spectro-imagerie est une technologie permettant d'obtenir l'image d'une scène dans un grand nombre (généralement plus d'une centaine) de bandes spectrales à la fois étroites et contigües.