Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by $V_{g}( ...
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...
We give a direct construction of a specific central idempotent in the endomorphism algebra of a finite lattice T. This idempotent is associated with all possible sublattices of T which are totally ordered. A generalization is considered in a conjectural fa ...
We study the spectra of non-regular semisimple elements in irreducible representations of simple algebraic groups. More precisely, we prove that if G is a simply connected simple linear algebraic group and φ : G → GL(V ) is a non-trivial irreducible repres ...
We classify the spherical birational sheets in a complex simple simply-connected algebraic group. We use the classification to show that, when G is a connected reductive complex algebraic group with simply-connected derived subgroup, two conjugacy classes ...
We analyze the deformation theory of equivariant vector bundles. In particular, we provide an effective criterion for verifying whether all infinitesimal deformations preserve the equivariant structure. As an application, using rigidity of the Frobenius ho ...
We prove that, in the category of groups, the composition of a cellularization and a localization functor need not be idempotent. This provides a negative answer to a question of Emmanuel Dror Farjoun. ...
Let G be a finite group and (K, O, k) be a p-modular system “large enough”. Let R = O or k. There is a bijection between the blocks of the group algebra RG and the central primitive idempotents (the blocks) of the so-called cohomological Mackey algebra coμ ...
This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involut ...