This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involution. The second, which consists of the last two chapters, generalizes several classical properties of unimodular hermitian forms over rings with involution to the setting of sesquilinear forms in hermitian categories. The original results established in this thesis are joint work with Professor Eva Bayer-Fluckiger. The first chapter contains an introduction to the algebraic theory of unimodular ε-hermitian forms over fields with involution. One knows that if L/K is an extension of odd degree (where char(K) ≠ 2) then the restriction map rL/K : W(K) →W(L) is injective. In addition, if the extension is purely inseparable then the map rL/K is bijective. In the second chapter we first introduce the basic notions and techniques of the theory of unimodular ε-hermitian forms over algebras with involution, in particular the technique of Morita equivalence. Let L/K be a finite field extension, τ an involution on L and A a finite-dimensional K-algebra endowed with an involution α such that αœK = τœK. E. Bayer-Fluckiger and H.W. Lenstra proved that if L/K is of odd degree and αœK = idK then the restriction map rL/Kε : Wε(A, α) → Wε(A ⊗K L, α ⊗ τ) is injective for any ε = ±1. This holds also if αœK ≠ idK. We prove that if, in addition, L/K is purely inseparable and A is a central simple K-algebra, then the above map is actually bijective. The proof proceeds via induction on the degree of the algebra and uses in an essential way an exact sequence of Witt groups due to R. Parimala, R. Sridharan and V. Suresh, later extended by N. Gernier-Boley and M.G. Mahmoudi. The third chapter contains a survey of the theory of hermitian and quadratic forms in hermitian categories. In particular, we cover the transfer between two hermitian categories, the reduction by an ideal, the transfer into the endomorphism ring of an object, as well as the Krull-Schmidt-Azumaya theorem and some of its applications. In the fourth chapter we prove, adapting the ideas developed by E. Bayer-Fluckiger and L. Fainsilber, that the category of sesquilinear forms in a hermitian category ℳ is equivalent to the category of unimodular hermitian forms in the category of double arrows of ℳ. In order to obtain this equivalence of categories we associate to a sesquilinear form the double arrow consisting of its two adjoints, equipped with a canonical unimodular hermitian form. This equivalence of categories allows us to define a notion of Witt group for sesquilinear forms in hermitian categories. This generalizes the classical notion of a Witt group of unimodular hermitian forms over rings with involution. Using the above equivalence of categories we deduce analogues of the Witt cancellation theorem and Springer's theorem for sesquilinear
Donna Testerman, Martin W. Liebeck
Tako Boris Fouotsa, Laurane Chloé Angélina Marco, Andrea Basso