The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability. The Laplace–Stieltjes transform of a real-valued function g is given by a Lebesgue–Stieltjes integral of the form for s a complex number. As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that g be of bounded variation on the region of integration. The most common are: The bilateral (or two-sided) Laplace–Stieltjes transform is given by The unilateral (one-sided) Laplace–Stieltjes transform is given by The limit is necessary to ensure the transform captures a possible jump in g(x) at x = 0, as is needed to make sense of the Laplace transform of the Dirac delta function. More general transforms can be considered by integrating over a contour in the complex plane; see . The Laplace–Stieltjes transform in the case of a scalar-valued function is thus seen to be a special case of the Laplace transform of a Stieltjes measure. To wit, In particular, it shares many properties with the usual Laplace transform. For instance, the convolution theorem holds: Often only real values of the variable s are considered, although if the integral exists as a proper Lebesgue integral for a given real value s = σ, then it also exists for all complex s with re(s) ≥ σ. The Laplace–Stieltjes transform appears naturally in the following context. If X is a random variable with cumulative distribution function F, then the Laplace–Stieltjes transform is given by the expectation: The Laplace-Stieltjes transform of a real random variable's cumulative distribution function is therefore equal to the random variable's moment-generating function, but with the sign of the argument reversed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.