Formal epistemology uses formal methods from decision theory, logic, probability theory and computability theory to model and reason about issues of epistemological interest. Work in this area spans several academic fields, including philosophy, computer science, economics, and statistics. The focus of formal epistemology has tended to differ somewhat from that of traditional epistemology, with topics like uncertainty, induction, and belief revision garnering more attention than the analysis of knowledge, skepticism, and issues with justification. Though formally oriented epistemologists have been laboring since the emergence of formal logic and probability theory (if not earlier), only recently have they been organized under a common disciplinary title. This gain in popularity may be attributed to the organization of yearly Formal Epistemology Workshops by Branden Fitelson and Sahotra Sarkar, starting in 2004, and the PHILOG-conferences starting in 2002 (The Network for Philosophical Logic and Its Applications) organized by Vincent F. Hendricks. Carnegie Mellon University's Philosophy Department hosts an annual summer school in logic and formal epistemology. In 2010, the department founded the Center for Formal Epistemology. Bayesian epistemology is an important theory in the field of formal epistemology. It has its roots in Thomas Bayes' work in the field of probability theory. It is based on the idea that beliefs are held gradually and that the strengths of the beliefs can be described as subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality. These norms can be divided into static constraints, governing the rationality of beliefs at any moment, and dynamic constraints, governing how rational agents should change their beliefs upon receiving new evidence. The most characteristic Bayesian expression of these principles is found in the form of Dutch books, which illustrate irrationality in agents through a series of bets that lead to a loss for the agent no matter which of the probabilistic events occurs.