MATH-665: Functional Data AnalysisA rigorous introduction to the statistical analysis of random functions and associated random operators. Viewing random functions either as random Hilbert vectors or as stochastic processes, we will s
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
MATH-449: BiostatisticsThis course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
MGT-581: Introduction to econometricsThe course provides an introduction to econometrics for economics and financial applications. The objective is to learn how to make valid (i.e., causal) inference from economic and social data.
EE-512: Applied biomedical signal processingThe goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples
MATH-352: Causal thinkingThis course will give a unified presentation of modern methods for causal inference. We focus on concepts, and we will present examples and ideas from various scientific disciplines, including medicin
ENV-542: Advanced satellite positioningAll fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monito
MATH-655: Advanced methods for causal inferenceThis course covers recent methodology for causal inference in settings with time-varying exposures (longitudinal data) and causally connected units (interference). We will consider theory for identifi