Seeds (cellular automaton)Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman and named by Mirek Wójtowicz. It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors (Moore neighborhood), as in Life. In each time step, a cell turns on or is "born" if it was off or "dead" but had exactly two neighbors that were on; all other cells turn off.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.
Rule 90In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the exclusive or of their two neighboring values. call it "the simplest non-trivial cellular automaton", and it is described extensively in Stephen Wolfram's 2002 book A New Kind of Science.
Stephen WolframStephen Wolfram (né le à Londres) est un scientifique britannique principalement connu pour son logiciel de calcul formel Mathematica, mais qui a également travaillé en physique des particules et sur les automates cellulaires. Stephen Wolfram est né le de parents réfugiés allemands, d'origine juive, émigrés en Angleterre en 1933. Son père, Hugo Wolfram, est romancier, et sa mère, , était professeur de philosophie à l'université d'Oxford. Il est le petit-fils de la psychanalyste Kate Friedlander.
HighLife (automate cellulaire)HighLife est un automate cellulaire similaire au jeu de la vie. Il fut inventé en 1994 par Nathan Thompson. HighLife est un automate cellulaire bidimensionnel dont les cellules peuvent prendre deux états (« vivantes » ou « mortes »). Une cellule morte y naît à l'étape suivante si elle est entourée de 3 ou 6 voisines vivantes, une cellule vivante survit à l'étape suivante si elle est entourée de deux ou trois cellules vivantes. Ces règles sont très proches de celles du jeu de la vie (seule la condition de naissance pour 6 cellules vivantes voisines diffère).
Puffeurthumb|Le deuxième puffeur trouvé. Il émet un grand nombre de débris. Un puffeur est un objet du jeu de la vie se déplaçant, mais, contrairement au vaisseau, le puffeur laisse un plus ou moins grand nombre de débris (cela varie entre un seul type de débris et un large amas de débris variés) thumb|Le premier puffeur découvert C'est en 1971 que Bill Gosper a découvert le premier puffeur (voir ci-contre). Il se déplace à une vitesse de c/2 et émet une paire de clignotants, une structure stable en deux parties, puis une autre paire de clignotants, mais plus serrés.
Breeder (cellular automaton)In cellular automata such as Conway's Game of Life, a breeder is a pattern that exhibits quadratic growth, by generating multiple copies of a secondary pattern, each of which then generates multiple copies of a tertiary pattern. Breeders can be classed by the relative motion of the patterns. The classes are denoted by three-letter codes, which denote whether the primary, secondary and tertiary elements respectively are moving (M) or stationary (S). The four basic types are: SMM – A gun that fires out rakes.
Speed of light (cellular automaton)In Conway's Game of Life (and related cellular automata), the speed of light is a propagation rate across the grid of exactly one step (either horizontally, vertically or diagonally) per generation. In a single generation, a cell can only influence its nearest neighbours, and so the speed of light (by analogy with the speed of light in physics) is the maximum rate at which information can propagate. It is therefore an upper bound to the speed at which any pattern can move. As in physics, the speed of light is represented with the letter c.
Elementary cellular automatonIn mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. There is an elementary cellular automaton (rule 110, defined below) which is capable of universal computation, and as such it is one of the simplest possible models of computation.
Rake (cellular automaton)A rake, in the lexicon of cellular automata, is a type of puffer train, which is an automaton that leaves behind a trail of debris. In the case of a rake, however, the debris left behind is a stream of spaceships, which are automata that "travel" by looping through a short series of iterations and end up in a new location after each cycle returns to the original configuration. In Conway's Game of Life, the discovery of rakes was one of the key components needed to form the breeder, the first known pattern in Life in which the number of live cells exhibits quadratic growth.