Concept

Limited principle of omniscience

In constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. They are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. These principles are also related to weak counterexamples in the sense of Brouwer. The limited principle of omniscience states : LPO: For any sequence , , ... such that each is either or , the following holds: either for all , or there is a with . The second disjunct can be expressed as and is constructively stronger than the negation of the first, . The weak schema in which the former is replaced with the latter is called WLPO and represents particular instances of excluded middle. The lesser limited principle of omniscience states: LLPO: For any sequence , , ... such that each is either or , and such that at most one is nonzero, the following holds: either for all , or for all . Here and are entries with even and odd index respectively. It can be proved constructively that the law of the excluded middle implies LPO, and LPO implies LLPO. However, none of these implications can be reversed in typical systems of constructive mathematics. The term "omniscience" comes from a thought experiment regarding how a mathematician might tell which of the two cases in the conclusion of LPO holds for a given sequence . Answering the question "is there a with ?" negatively, assuming the answer is negative, seems to require surveying the entire sequence. Because this would require the examination of infinitely many terms, the axiom stating it is possible to make this determination was dubbed an "omniscience principle" by . The two principles can be expressed as purely logical principles, by casting it in terms of decidable predicates on the naturals. I.e. for which does hold. The lesser principle corresponds to a predicate version of that De Morgan's law that does not hold intuitionistically, i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.