Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore les modèles paramétriques dans l'analyse des données, couvrant les estimateurs de régression, les problèmes d'optimisation et les modèles statistiques.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.
Explore les modèles linéaires, la régression, la prédiction multi-sorties, la classification, la non-linéarité et l'optimisation basée sur le gradient.