Rule 184Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving the majority problem as well as for its ability to simultaneously describe several, seemingly quite different, particle systems: Rule 184 can be used as a simple model for traffic flow in a single lane of a highway, and forms the basis for many cellular automaton models of traffic flow with greater sophistication. In this model, particles (representing vehicles) move in a single direction, stopping and starting depending on the cars in front of them.
Rule 90In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the exclusive or of their two neighboring values. call it "the simplest non-trivial cellular automaton", and it is described extensively in Stephen Wolfram's 2002 book A New Kind of Science.
Wolfram codeWolfram code is a widely used numbering system for one-dimensional cellular automaton rules, introduced by Stephen Wolfram in a 1983 paper and popularized in his book A New Kind of Science. The code is based on the observation that a table specifying the new state of each cell in the automaton, as a function of the states in its neighborhood, may be interpreted as a k-digit number in the S-ary positional number system, where S is the number of states that each cell in the automaton may have, k = S2n + 1 is the number of neighborhood configurations, and n is the radius of the neighborhood.
Rule 110The Rule 110 cellular automaton (often called simply Rule 110)is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. This implies that, in principle, any calculation or computer program can be simulated using this automaton. In an elementary cellular automaton, a one-dimensional pattern of 0s and 1s evolves according to a simple set of rules.
Automate cellulairethumb|250px|right| À gauche, une règle locale simple : une cellule passe d'un état (i) au suivant (i+1) dans le cycle d'états dès que i+1 est présent dans au moins 3 des 8 cellules voisines. À droite, le résultat (complexe) de l'application répétée de cette règle sur une grille de cellules. Ce type d'automates cellulaires a été découvert par D. Griffeath. Un automate cellulaire consiste en une grille régulière de « cellules » contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours du temps.
Elementary cellular automatonIn mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors. There is an elementary cellular automaton (rule 110, defined below) which is capable of universal computation, and as such it is one of the simplest possible models of computation.
Stephen WolframStephen Wolfram (né le à Londres) est un scientifique britannique principalement connu pour son logiciel de calcul formel Mathematica, mais qui a également travaillé en physique des particules et sur les automates cellulaires. Stephen Wolfram est né le de parents réfugiés allemands, d'origine juive, émigrés en Angleterre en 1933. Son père, Hugo Wolfram, est romancier, et sa mère, , était professeur de philosophie à l'université d'Oxford. Il est le petit-fils de la psychanalyste Kate Friedlander.