Concept

Seizième problème de Hilbert

Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics. The original problem was posed as the Problem of the topology of algebraic curves and surfaces (Problem der Topologie algebraischer Kurven und Flächen). Actually the problem consists of two similar problems in different branches of mathematics: An investigation of the relative positions of the branches of real algebraic curves of degree n (and similarly for algebraic surfaces). The determination of the upper bound for the number of limit cycles in two-dimensional polynomial vector fields of degree n and an investigation of their relative positions. The first problem is yet unsolved for n = 8. Therefore, this problem is what usually is meant when talking about Hilbert's sixteenth problem in real algebraic geometry. The second problem also remains unsolved: no upper bound for the number of limit cycles is known for any n > 1, and this is what usually is meant by Hilbert's sixteenth problem in the field of dynamical systems. The Spanish Royal Society for Mathematics published an explanation of Hilbert's sixteenth problem. In 1876, Harnack investigated algebraic curves in the real projective plane and found that curves of degree n could have no more than separate connected components. Furthermore, he showed how to construct curves that attained that upper bound, and thus that it was the best possible bound. Curves with that number of components are called M-curves. Hilbert had investigated the M-curves of degree 6, and found that the 11 components always were grouped in a certain way. His challenge to the mathematical community now was to completely investigate the possible configurations of the components of the M-curves. Furthermore, he requested a generalization of Harnack's curve theorem to algebraic surfaces and a similar investigation of surfaces with the maximum number of components.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.