The applications of nanotechnology, commonly incorporate industrial, medicinal, and energy uses. These include more durable construction materials, therapeutic drug delivery, and higher density hydrogen fuel cells that are environmentally friendly. Being that nanoparticles and nanodevices are highly versatile through modification of their physiochemical properties, they have found uses in nanoscale electronics, cancer treatments, vaccines, hydrogen fuel cells, and nanographene batteries.
Nanotechnology's use of smaller sized materials allows for adjustment of molecules and substances at the nanoscale level, which can further enhance the mechanical properties of materials or grant access to less physically accessible areas of the body.
Nanotubes can help with cancer treatment. They have been shown to be effective tumor killers in those with kidney or breast cancer. Multi-walled nanotubes are injected into a tumor and treated with a special type of laser that generates near-infrared radiation for around half a minute. These nanotubes vibrate in response to the laser, and heat is generated. When the tumor has been heated enough, the tumor cells begin to die. Processes like this one have been able to shrink kidney tumors by up to four-fifths.
Ultrablack materials, made up of “forests” of carbon nanotubes, are important in space, where there is more light than is convenient to work with. Ultrablack material can be applied to camera and telescope systems to decrease the amount of light and allow for more detailed images to be captured.
Nanotubes show promise in treating cardiovascular disease. They could play an important role in blood vessel cleanup. Theoretically, nanotubes with SHP1i molecules attached to them would signal macrophages to clean up plaque in blood vessels without destroying any healthy tissue. Researchers have tested this type of modified nanotube in mice with high amounts of plaque buildup; the mice that received the nanotube treatment showed statistically significant reductions in plaque buildup compared to the mice in the placebo group.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
Explore les principes et les applications de la tomographie, y compris les techniques de microscopie 3D et la reconstruction de matériaux au niveau atomique.
Les nanosciences et nanotechnologies (d’après le grec , « nain »), ou NST, peuvent être définies au minimum comme l’ensemble des études et des procédés de fabrication et de manipulation de structures (physiques, chimiques ou biologiques), de dispositifs et de systèmes matériels à l’échelle du nanomètre (nm), qui est l'unité la plus proche de la distance entre deux atomes. Les NST présentent plusieurs acceptions liées à la nature transversale de cette jeune discipline.
Recent breakthroughs in cancer immunotherapy, exemplified by immune checkpoint blockade and CAR T cell therapy, have achieved remarkable clinical success. However, the majority of cancer patients fail to respond to immunotherapy or suffer from relapse. Nan ...
EPFL2023
, ,
Diamond is an exceptional material that has recently seen a remarkable increase in interest in academic research and engineering since high-quality substrates became commercially available and affordable. Exploiting the high refractive index, hardness, las ...
WALTER DE GRUYTER GMBH2021
, ,
Recent advancements in nanofabrication have enabled the creation of vacuum electronic devices with nanoscale free-space gaps. These nanoelectronic devices promise the benefits of cold-field emission and transport through free space, such as high nonlineari ...