In graph theory, a shallow minor or limited-depth minor is a restricted form of a graph minor in which the subgraphs that are contracted to form the minor have small diameter. Shallow minors were introduced by , who attributed their invention to Charles E. Leiserson and Sivan Toledo.
One way of defining a minor of an undirected graph G is by specifying a subgraph H of G, and a collection of disjoint subsets Si of the vertices of G, each of which forms a connected induced subgraph Hi of H. The minor has a vertex vi for each subset Si, and an edge
vivj whenever there exists an edge from Si to Sj that belongs to H.
In this formulation, a d-shallow minor (alternatively called a shallow minor of depth d) is a minor that can be defined in such a way that each of the subgraphs Hi has radius at most d, meaning that it contains a central vertex ci that is within distance d of all the other vertices of Hi. Note that this distance is measured by hop count in Hi, and because of that it may be larger than the distance in G.
Shallow minors of depth zero are the same thing as subgraphs of the given graph. For sufficiently large values of d (including all values at least as large as the number of vertices), the d-shallow minors of a given graph coincide with all of its minors.
use shallow minors to partition the families of finite graphs into two types. They say that a graph family F is somewhere dense if there exists a finite value of d for which the d-shallow minors of graphs in F consist of every finite graph. Otherwise, they say that a graph family is nowhere dense. This terminology is justified by the fact that, if F is a nowhere dense class of graphs, then (for every ε > 0) the n-vertex graphs in F have O(n1 + ε) edges; thus, the nowhere dense graphs are sparse graphs.
A more restrictive type of graph family, described similarly, are the graph families of bounded expansion. These are graph families for which there exists a function f such that the ratio of edges to vertices in every d-shallow minor is at most f(d).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
En théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Community structure in graph-modeled data appears in a range of disciplines that comprise network science. Its importance relies on the influence it bears on other properties of graphs such as resilience, or prediction of missing connections. Nevertheless, ...
EPFL2022
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
IEEE COMPUTER SOC2022
,
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...