In graph theory, a shallow minor or limited-depth minor is a restricted form of a graph minor in which the subgraphs that are contracted to form the minor have small diameter. Shallow minors were introduced by , who attributed their invention to Charles E. Leiserson and Sivan Toledo.
One way of defining a minor of an undirected graph G is by specifying a subgraph H of G, and a collection of disjoint subsets Si of the vertices of G, each of which forms a connected induced subgraph Hi of H. The minor has a vertex vi for each subset Si, and an edge
vivj whenever there exists an edge from Si to Sj that belongs to H.
In this formulation, a d-shallow minor (alternatively called a shallow minor of depth d) is a minor that can be defined in such a way that each of the subgraphs Hi has radius at most d, meaning that it contains a central vertex ci that is within distance d of all the other vertices of Hi. Note that this distance is measured by hop count in Hi, and because of that it may be larger than the distance in G.
Shallow minors of depth zero are the same thing as subgraphs of the given graph. For sufficiently large values of d (including all values at least as large as the number of vertices), the d-shallow minors of a given graph coincide with all of its minors.
use shallow minors to partition the families of finite graphs into two types. They say that a graph family F is somewhere dense if there exists a finite value of d for which the d-shallow minors of graphs in F consist of every finite graph. Otherwise, they say that a graph family is nowhere dense. This terminology is justified by the fact that, if F is a nowhere dense class of graphs, then (for every ε > 0) the n-vertex graphs in F have O(n1 + ε) edges; thus, the nowhere dense graphs are sparse graphs.
A more restrictive type of graph family, described similarly, are the graph families of bounded expansion. These are graph families for which there exists a function f such that the ratio of edges to vertices in every d-shallow minor is at most f(d).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of O(\sqrt{n}) vertices from an n-vertex graph (where the O invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most 2n/3 vertices.
Covers stochastic properties, network structures, models, statistics, centrality measures, and sampling methods in network data analysis.
Community structure in graph-modeled data appears in a range of disciplines that comprise network science. Its importance relies on the influence it bears on other properties of graphs such as resilience, or prediction of missing connections. Nevertheless, ...
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...