Luc-Normand Tellier (né le à Montréal, Québec, Canada) est professeur émérite d’économie spatiale de l’Université du Québec à Montréal. Luc-Normand Tellier a une double formation en économie et en urbanisme. Détenteur d’un baccalauréat en science économique (1968) et d’une maîtrise en urbanisme (1971) de l’université de Montréal, il a aussi obtenu un Master (1971) et un Ph.D. (1973) en science régionale de l’université de Pennsylvanie. Par la suite, il a enseigné à l’Institut d’urbanisme de l’université de Montréal avant de fonder le rassemblement en études urbaines de l’université du Québec à Montréal en 1976, lequel est devenu le Département d’études urbaines et touristiques en 1980. Il a été directeur de ce rassemblement et de ce département pendant treize ans ainsi que du centre « Urbanisation » de l’Institut national de la recherche scientifique de 1981 à 1983. Il a reçu le titre de « professeur émérite » de l’université du Québec à Montréal en 2012. En 1971, Tellier a découvert la première solution numérique directe, sans itérations, des problèmes du triangle de Fermat (ou point de Fermat) et du triangle de Weber. Bien avant les contributions de Von Thünen qui datent de 1818, le problème du triangle de Fermat peut être vu comme le point d’origine même de l’économie spatiale. Il a été formulé par Fermat avant 1640. Le problème du triangle de Weber, qui est une généralisation du problème de Fermat, a été formulé pour la première fois par Thomas Simpson en 1750 et il a été popularisé par Alfred Weber en 1909. Le problème du triangle de Fermat consiste à localiser un point D par rapport à trois points A, B et C de façon à minimiser la somme des distances entre D et chacun des trois autres points, tandis que le problème du triangle de Weber consiste à localiser un point D par rapport à trois points A, B et C de façon à minimiser la somme des coûts de transport entre D et chacun des trois autres points. Dans , il formule un tout nouveau problème, le problème d’attraction-répulsion qui constitue une généralisation à la fois des problèmes de Fermat et de Weber.