Le principe d'énergie libre est un cadre utilisé pour décrire comment le cerveau prend des décisions et s'adapte à des circonstances changeantes. Il repose sur l'idée que le cerveau essaie constamment de minimiser son énergie libre, qui est une mesure de la surprise que le cerveau ressent face aux informations sensorielles qu'il reçoit. En minimisant son énergie libre, le cerveau peut faire des prédictions sur le monde qui l'entoure et prendre les actions appropriées. La minimisation implicite de l'énergie libre variationnelle est formellement liée aux méthodes bayésiennes variationnelles et a été introduite à l'origine par Karl Friston comme explication de la perception incarnée dans les neurosciences, où elle est aussi connue sous le nom d'inférence active ou de codage prédictif. En termes généraux, le principe de l'énergie libre est utilisé pour décrire un système tel que défini comme étant enfermé dans une couverture de Markov - essaie de minimiser la différence entre son modèle du monde et la perception de ses capteurs. Cette différence peut être qualifiée de « surprise » et minimisée par une mise à jour constante du modèle du monde. En tant que tel, le principe est basé sur l'idée bayésienne du cerveau comme « moteur d'inférence ». Friston a ajouté une deuxième voie à la minimisation : l'action. En changeant activement le monde dans l'état attendu, les systèmes peuvent aussi minimiser l'énergie libre du système. Friston suppose que c'est le principe de toute réaction biologique. Friston considère que son principe s'applique aussi bien aux troubles mentaux qu'à l'intelligence artificielle. Les implémentations de l'IA basées sur le principe de l'inférence active ont montré des avantages par rapport à d'autres méthodes. Il est également utilisé pour expliquer comment les systèmes biologiques se maintiennent en état de non-équilibre quasi-stationnaire en se limitant à un nombre limité d'états Le codage prédictif est une théorie de neurosciences sur la manière dont le cerveau traite les informations sensorielles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.