Exceptional inverse image functorIn mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of . It is needed to express Verdier duality in its most general form. Let f: X → Y be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor Rf!: D(Y) → D(X) where D(–) denotes the of sheaves of abelian groups or modules over a fixed ring.
Image functors for sheavesIn mathematics, especially in sheaf theory—a domain applied in areas such as topology, logic and algebraic geometry—there are four image functors for sheaves that belong together in various senses. Given a continuous mapping f: X → Y of topological spaces, and the Sh(–) of sheaves of abelian groups on a topological space. The functors in question are f∗ : Sh(X) → Sh(Y) f∗ : Sh(Y) → Sh(X) f! : Sh(X) → Sh(Y) Rf! : D(Sh(Y)) → D(Sh(X)).
Verdier dualityIn mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.