Type unitéUn type unité est un type mathématique avec une seule valeur. L'ensemble associé avec le type unité peut être n'importe quel ensemble singleton. Il y a un isomorphisme entre deux tels ensembles, donc on parle souvent « du » type unité et on ignore les détails de cette valeur. On peut aussi considérer le type unité comme un 0-uplet, c’est-à-dire un produit cartésien de zéro type. En théorie des catégories, le type unité est un objet terminal dans beaucoup de catégories basées sur les ensembles.
Système U (mathématiques)En logique mathématique, le Système U et le Système U− sont des systèmes de types purs, c'est-à-dire des formes spéciales d'un calcul lambda typé avec un nombre arbitraire de sortes, d'axiomes et de règles (ou de relations entre les sortes). Ils ont tous deux été prouvés incohérents par Jean-Yves Girard en 1972. Ce résultat conduit alors à ce que la théorie des types de Martin-Löf de 1971 est incohérente car elle permet le même comportement de «type dans le type» que le paradoxe de Girard exploite.
Lean (assistant de preuve)Lean est un assistant de preuve et un langage de programmation. Il repose sur le principe de calcul des constructions avec types inductifs. Lean possède un certain nombre de fonctionnalités notables qui le distinguent des autres logiciels d'assistance à la preuve. Lean peut être compilé vers du JavaScript, et est ainsi accessible dans un navigateur Web. Il prend en charge nativement les caractères Unicode des symboles mathématiques, qui peuvent être saisis grâce à des raccourcis rappelant la syntaxe de LaTeX (par exemple, "×" s'obtient en tapant "\times").
MatitaMatita is an experimental proof assistant under development at the Computer Science Department of the University of Bologna. It is a tool aiding the development of formal proofs by man-machine collaboration, providing a programming environment where formal specifications, executable algorithms and automatically verifiable correctness certificates naturally coexist. Matita is based on a dependent type system known as the Calculus of (Co)Inductive Constructions (a derivative of Calculus of Constructions), and is compatible, to some extent, with Coq.
Taquet (symbole)En logique mathématique et en informatique le symbole taquet, « ⊢ », désigné ainsi en raison de sa ressemblance au système de blocage des voiles sur un bateau, représente la déduction logique. La formule « x ⊢ y » signifie « y est déductible de x », c'est-à-dire que y est prouvable à partir de x. On peut aussi employer le taquet comme un opérateur unaire : peut être lu comme : Je sais que A est vrai.
Categorial grammarCategorial grammar is a family of formalisms in natural language syntax that share the central assumption that syntactic constituents combine as functions and arguments. Categorial grammar posits a close relationship between the syntax and semantic composition, since it typically treats syntactic categories as corresponding to semantic types. Categorial grammars were developed in the 1930s by Kazimierz Ajdukiewicz and in the 1950s by Yehoshua Bar-Hillel and Joachim Lambek.
Logical frameworkIn logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory. This approach has been used successfully for (interactive) automated theorem proving. The first logical framework was Automath; however, the name of the idea comes from the more widely known Edinburgh Logical Framework, LF.
NuprlNuprl is a proof development system, providing computer-mediated analysis and proofs of formal mathematical statements, and tools for software verification and optimization. Originally developed in the 1980s by Robert Lee Constable and others, the system is now maintained by the PRL Project at Cornell University. The currently supported version, Nuprl 5, is also known as FDL (Formal Digital Library). Nuprl functions as an automated theorem proving system and can also be used to provide proof assistance.
AutomathAutomath (pour ) était un langage formel, développé par Nicolaas Govert de Bruijn à partir de 1967, dont le but était d'exprimer des théories mathématiques complètes de manière à inclure un assistant de preuve qui pouvait en vérifier la correction. Le système Automath apportait de nombreuses notions novatrices qui ont été adoptées ou réinventées ultérieurement, comme la substitution explicite ou la notion de type dépendant dont Automath est un exemple paradigmatique.
Kind (type theory)In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier.