The advanced heavy-water reactor (AHWR) or AHWR-300 is the latest Indian design for a next-generation nuclear reactor that burns thorium in its fuel core. It is slated to form the third stage in India's three-stage fuel-cycle plan. This phase of the fuel cycle plan was supposed to be built starting with a 300MWe prototype in 2016.
KAMINI is the world's first thorium-based experimental reactor. It is cooled and moderated by light water, fueled with uranium-233 metal produced by the thorium fuel cycle harnessed by the neighbouring FBTR reactor and produces 30 KW of thermal energy at full power.
Bhabha Atomic Research Centre (BARC) set up a large infrastructure to facilitate the design and development of these Advanced Heavy Water reactors. Things to be included range from materials technologies, critical components, reactor physics, and safety analysis. Several facilities have been set up to experiment with these reactors. The AHWR is a pressure tube type of heavy water reactor. The Government of India, Department of Atomic Energy (DAE), is fully funding the future development, the current development, and the design of the Advanced Heavy Water Reactor. The new version of Advanced Heavy Water Reactors will be equipped with more general safety requirements. India is the base for these reactors due to India's large Thorium reserves; therefore, it is more geared for continual use and operation of the AHWR.
Thorium is three times more abundant in the Earth's crust than uranium, though less abundant in terms of economically viable to extract proven reserves, with India holding the largest proven reserves of any country. A lot of thorium is also contained in the tailings of mines that extract rare earth elements from monazite which usually contains both rare earth elements and thorium. As long as demand for thorium remains low, these tailings present a chemical (thorium is a toxic heavy metal) and - to a lesser extent - radiological issue which would be solved at least in part by use of thorium in nuclear power plants.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
India's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India. The ultimate focus of the programme is on enabling the thorium reserves of India to be utilised in meeting the country's energy requirements.
Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential; it is difficult to weaponize the uranium-233/232 and plutonium-238 isotopes that are largely consumed in thorium reactors.
Nuclear power is the fifth-largest source of electricity in India after coal, gas, hydroelectricity and wind power. , India has 22 nuclear reactors in operation in 8 nuclear power plants, with a total installed capacity of 7,380 MW. Nuclear power produced a total of 43 TWh in 2020–21, contributing 3.11% of total power generation in India (1,382 TWh). 10 more reactors are under construction with a combined generation capacity of 8,000 MW. In October 2010, India drew up a plan to reach a nuclear power capacity of 63 GW in 2032.
Explore la physique des neutrons dans les réacteurs nucléaires, couvrant la criticité, les cycles du combustible, les caractéristiques des réacteurs et le ralentissement des processus.
Couvre les bases de la physique nucléaire, les avantages de l'énergie nucléaire, la classification des réacteurs, les réactions de fission et l'élimination de la chaleur de désintégration.
Introduit l'ingénierie nucléaire, couvrant les réactions, les réactions en chaîne, le cycle du combustible, la criticité et les facteurs de multiplication.
A key step in the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactor (SBR) according to the state-of- ...
The present doctoral work was performed to contribute to the conceptual design development and safety assessment of a Generation IV Sodium Fast Reactor (SFR) in the frame of the European Sodium Fast Reactor Safety Measures Assessment and Research Tools (ES ...
EPFL2022
, ,
The prediction of departure from nucleate boiling (DNB) has always been a crucial aspect of thermal-hydraulic codes for the analysis of Light Water Reactors. In this paper, GeN-Foam, a multi-physics code developed based on OpenFOAM, has been enhanced to in ...