India's three-stage nuclear power programmeIndia's three-stage nuclear power programme was formulated by Homi Bhabha, the well-known physicist, in the 1950s to secure the country's long term energy independence, through the use of uranium and thorium reserves found in the monazite sands of coastal regions of South India. The ultimate focus of the programme is on enabling the thorium reserves of India to be utilised in meeting the country's energy requirements.
Thorium-based nuclear powerThorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential; it is difficult to weaponize the uranium-233/232 and plutonium-238 isotopes that are largely consumed in thorium reactors.
Nuclear power in IndiaNuclear power is the fifth-largest source of electricity in India after coal, gas, hydroelectricity and wind power. , India has 22 nuclear reactors in operation in 8 nuclear power plants, with a total installed capacity of 7,380 MW. Nuclear power produced a total of 43 TWh in 2020–21, contributing 3.11% of total power generation in India (1,382 TWh). 10 more reactors are under construction with a combined generation capacity of 8,000 MW. In October 2010, India drew up a plan to reach a nuclear power capacity of 63 GW in 2032.
Cycle du combustible nucléaire au thoriumLe cycle du combustible au thorium décrit l'utilisation du thorium 232, un élément abondant dans la nature, comme matériau fertile permettant d'alimenter un réacteur nucléaire. Le cycle du thorium présente de nombreux avantages théoriques par rapport à un cycle à l'uranium : le thorium est trois à quatre fois plus abondant que l'uranium, notamment dans les pays qui sont susceptibles de construire des réacteurs dans le futur, comme l'Inde, le Brésil et la Turquie.
Generation IV reactorGeneration IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
PlutoniumLe plutonium est l'élément chimique de symbole Pu et de numéro atomique 94. C'est un métal radioactif transuranien de la famille des actinides. Il se présente sous la forme d'un solide cristallisé dont les surfaces fraîches sont gris argenté mais se couvrent en quelques minutes, en présence d'humidité, d'une couche terne de couleur grise, tirant parfois sur le vert olive, constituée d'oxydes et d'hydrures ; l'accroissement de volume qui en résulte peut atteindre 70 % d'un bloc de plutonium pur, et la substance ainsi formée tend à se désagréger en une poudre pyrophorique.
SurgénérationLa surgénération ou surrégénération est la capacité d'un réacteur nucléaire à produire plus d'isotopes fissiles qu'il n'en consomme, en transmutant des isotopes fertiles en isotopes fissiles. Le seul isotope fissile disponible en tant que ressource naturelle sur Terre est l'uranium 235, directement exploitable dans le cycle du combustible nucléaire. La surgénération permet théoriquement de valoriser en tant que combustible nucléaire l'ensemble des matières fertiles tels l'uranium 238, qui représente plus de 99 % de l'uranium naturel, et le thorium, lui-même trois fois plus abondant que l'uranium.
Cycle du combustible nucléairethumb|Schéma simplifié d'un cycle du combustible nucléaire : (1) extraction-enrichissement-fabrication (2) retraitement après usage (3) stockage ou (4) recyclage. Le cycle du combustible nucléaire (ou chaîne du combustible nucléaire) est l'ensemble des opérations de fourniture de combustible aux réacteurs nucléaires, puis de gestion du combustible irradié, depuis l'extraction du minerai jusqu'à la gestion des déchets radioactifs.
Énergie nucléaireSelon le contexte d'usage, le terme d’énergie nucléaire recouvre plusieurs acceptions, toutes liées à la physique et aux réactions de noyaux atomiques. Dans le langage courant, l’énergie nucléaire correspond aux usages civils et militaires de l’énergie libérée lors des réactions de fission nucléaire ou de fusion nucléaire de noyaux atomiques au sein d'un réacteur nucléaire ou lors d'une explosion atomique.