thumb|Schéma simplifié d'un cycle du combustible nucléaire : (1) extraction-enrichissement-fabrication (2) retraitement après usage (3) stockage ou (4) recyclage.
Le cycle du combustible nucléaire (ou chaîne du combustible nucléaire) est l'ensemble des opérations de fourniture de combustible aux réacteurs nucléaires, puis de gestion du combustible irradié, depuis l'extraction du minerai jusqu'à la gestion des déchets radioactifs.
Ces opérations constituent les différentes étapes du cycle du combustible nucléaire qui interviennent en amont ou en aval du cycle selon qu'elles se déroulent avant ou après son irradiation dans un réacteur.
Plusieurs stratégies se distinguent par l'absence ou la présence d'étapes telles que l'enrichissement de l'uranium et le traitement du combustible irradié.
En 2006, deux grandes catégories existent : les cycles sans recyclage qui considèrent tout le combustible irradié comme déchet et les cycles avec recyclage partiel consistant à extraire du combustible irradié déchargé des réacteurs tout ou partie des matières valorisables – c'est-à-dire susceptibles d'être réutilisées pour fournir de l'énergie – afin de fabriquer du combustible neuf.
Théoriquement, un cycle est dit ouvert, lorsque les matières valorisables du combustible irradié ne sont pas recyclées. Un cycle est dit fermé dans le cadre d'un recyclage des isotopes fissiles.
Pour pouvoir être réalisé industriellement, un réacteur nucléaire doit utiliser un isotope fissile, de demi-vie suffisamment longue et pouvant être produit industriellement. Les isotopes répondant à cette contrainte sont :
L'uranium 235, isotope naturellement présent dans l'uranium à un taux de 0,72 % ;
L'uranium 233, formé par irradiation à partir du thorium ;
Le plutonium 239 (et de manière secondaire le plutonium 241), formé par irradiation à partir de l'uranium 238.
Par ailleurs, un réacteur contiendra toujours un isotope fertile, qu'il soit naturellement mélangé au matériau fissile (cas de l'uranium naturel), ou qu'il soit nécessaire pour régénérer la matière fissile.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Le traitement du combustible nucléaire usé (anciennement retraitement des combustibles usés) regroupe plusieurs procédés mécaniques et chimiques de traitement du combustible nucléaire après utilisation en réacteur, visant à séparer des éléments potentiellement réutilisables tels que l'uranium et le plutonium, mais également les « actinides mineurs », des produits de fission contenus dans le combustible nucléaire irradié. Le traitement du combustible usé est l'une des étapes du cycle du combustible nucléaire.
vignette|Modèle de l'atome. Le combustible nucléaire est le produit qui, contenant des isotopes fissiles (uranium, plutonium...), fournit l'énergie dans le cœur d'un réacteur nucléaire en entretenant la réaction en chaîne de fission nucléaire. Les termes « combustible » et « combustion » sont utilisés par analogie à la chaleur dégagée par une matière en feu, mais sont inappropriés pour caractériser tant le produit que son action.
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started. Nuclear fuel rods become progressively more radioactive (and less thermally useful) due to neutron activation as they are fissioned, or "burnt" in the reactor.
Introduit l'ingénierie nucléaire, couvrant les réactions, les réactions en chaîne, le cycle du combustible, la criticité et les facteurs de multiplication.
The School's aim is to address the challenges of reactor design and optimal fuel cycles, and to broaden the understanding of theory and experiments.The programme of each School session is defined by
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...
Nuclear power is a powerful technology that plays an important role in the fight against climate change, and research is continuously engaged in studies that could further improve its safety. After the Fukushima accident, Accident Tolerant Fuels research h ...
EPFL2024
, , , , ,
In response to the need for validating high-fidelity deterministic neutronics solvers capable of providing pin-resolved neutron flux distributions, intra-pin reaction rates measurements were performed in the CROCUS experimental reactor. A specially designe ...