In computing, a materialized view is a database object that contains the results of a query. For example, it may be a local copy of data located remotely, or may be a subset of the rows and/or columns of a table or join result, or may be a summary using an aggregate function. The process of setting up a materialized view is sometimes called materialization. This is a form of caching the results of a query, similar to memoization of the value of a function in functional languages, and it is sometimes described as a form of precomputation. As with other forms of precomputation, database users typically use materialized views for performance reasons, i.e. as a form of optimization. Materialized views which store data based on remote tables were also known as snapshots (deprecated Oracle terminology). In any database management system following the relational model, a view is a virtual table representing the result of a database query. Whenever a query or an update addresses an ordinary view's virtual table, the DBMS converts these into queries or updates against the underlying base tables. A materialized view takes a different approach: the query result is cached as a concrete ("materialized") table (rather than a view as such) that may be updated from the original base tables from time to time. This enables much more efficient access, at the cost of extra storage and of some data being potentially out-of-date. Materialized views find use especially in data warehousing scenarios, where frequent queries of the actual base tables can be expensive. In a materialized view, indexes can be built on any column. In contrast, in a normal view, it's typically only possible to exploit indexes on columns that come directly from (or have a mapping to) indexed columns in the base tables; often this functionality is not offered at all. Materialized views were implemented first by the Oracle Database: the Query rewrite feature was added from version 8i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
BIO-378: Physiology lab I
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données. Le
BIO-379: Physiology lab II
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données. Le
ME-101: Mechanical construction I (for ME)
Le cours ME-101 vise à l'acquisition des règles et du langage normalisé de la communication technique, et des bases de la conception mécanique. Ce cours intègre des travaux pratiques d'initiation à la
Afficher plus
Séances de cours associées (40)
Vues : Simplification des requêtes SQL
Explore les vues dans SQL, couvrant la création, la matérialisation, la maintenance, la construction de cubes et les optimisations de requêtes top-k.
Bandits à bras multiples
Explore les bandits multibras dans des contextes antagonistes et des stratégies pour optimiser les récompenses.
Entrepôts de données et systèmes d'aide à la décision
Explore les vues dans les entrepôts de données, les compromis de matérialisation, les optimisations de requêtes top-k, et l'impact des magasins de colonnes.
Afficher plus
Publications associées (36)
Concepts associés (8)
Vue (base de données)
Une vue dans une base de données est une synthèse d'une requête d'interrogation de la base. On peut la voir comme une table virtuelle, définie par une requête. Les avantages des vues sont : d'éviter de taper une requête très longue : la vue sert à donner un nom à la requête pour l'utiliser souvent, de masquer certaines données à certains utilisateurs. En SQL, les protections d'une vue ne sont pas forcément les mêmes que celles des tables sous-jacentes. Les vues ne sont pas forcément purement virtuelles.
Comparison of relational database management systems
The following tables compare general and technical information for a number of relational database management systems. Please see the individual products' articles for further information. Unless otherwise specified in footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs. The operating systems that the RDBMSes can run on. Information about what fundamental RDBMS features are implemented natively. Note (1): Currently only supports read uncommited transaction isolation.
Database schema
The database schema is the structure of a database described in a formal language supported typically by a relational database management system (RDBMS). The term "schema" refers to the organization of data as a blueprint of how the database is constructed (divided into database tables in the case of relational databases). The formal definition of a database schema is a set of formulas (sentences) called integrity constraints imposed on a database. These integrity constraints ensure compatibility between parts of the schema.
Afficher plus
MOOCs associés (4)
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Systèmes d’Information Géographique 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.