Concept

Normal function

In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) if and only if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions: For every limit ordinal γ (i.e. γ is neither zero nor a successor), it is the case that f(γ) = sup {f(ν) : ν < γ}. For all ordinals α < β, it is the case that f(α) < f(β). A simple normal function is given by f(α) = 1 + α (see ordinal arithmetic). But f(α) = α + 1 is not normal because it is not continuous at any limit ordinal; that is, the inverse image of the one-point open set is the set , which is not open when λ is a limit ordinal. If β is a fixed ordinal, then the functions f(α) = β + α, f(α) = β × α (for β ≥ 1), and f(α) = βα (for β ≥ 2) are all normal. More important examples of normal functions are given by the aleph numbers , which connect ordinal and cardinal numbers, and by the beth numbers . If f is normal, then for any ordinal α, f(α) ≥ α. Proof: If not, choose γ minimal such that f(γ) < γ. Since f is strictly monotonically increasing, f(f(γ)) < f(γ), contradicting minimality of γ. Furthermore, for any non-empty set S of ordinals, we have f(sup S) = sup f(S). Proof: "≥" follows from the monotonicity of f and the definition of the supremum. For "≤", set δ = sup S and consider three cases: if δ = 0, then S = {0} and sup f(S) = f(0); if δ = ν + 1 is a successor, then there exists s in S with ν < s, so that δ ≤ s. Therefore, f(δ) ≤ f(s), which implies f(δ) ≤ sup f(S); if δ is a nonzero limit, pick any ν < δ, and an s in S such that ν < s (possible since δ = sup S). Therefore, f(ν) < f(s) so that f(ν) < sup f(S), yielding f(δ) = sup {f(ν) : ν < δ} ≤ sup f(S), as desired. Every normal function f has arbitrarily large fixed points; see the fixed-point lemma for normal functions for a proof. One can create a normal function f' : Ord → Ord, called the derivative of f, such that f' (α) is the α-th fixed point of f. For a hierarchy of normal functions, see Veblen functions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.