In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β < γ < λ. Every ordinal number is either zero, or a successor ordinal, or a limit ordinal. For example, the smallest limit ordinal is ω, the smallest ordinal greater than every natural number. This is a limit ordinal because for any smaller ordinal (i.e., for any natural number) n we can find another natural number larger than it (e.g. n+1), but still less than ω. The next-smallest limit ordinal is ω+ω. This will be discussed further in the article. Using the von Neumann definition of ordinals, every ordinal is the well-ordered set of all smaller ordinals. The union of a nonempty set of ordinals that has no greatest element is then always a limit ordinal. Using von Neumann cardinal assignment, every infinite cardinal number is also a limit ordinal. Various other ways to define limit ordinals are: It is equal to the supremum of all the ordinals below it, but is not zero. (Compare with a successor ordinal: the set of ordinals below it has a maximum, so the supremum is this maximum, the previous ordinal.) It is not zero and has no maximum element. It can be written in the form ωα for α > 0. That is, in the Cantor normal form there is no finite number as last term, and the ordinal is nonzero. It is a limit point of the class of ordinal numbers, with respect to the order topology. (The other ordinals are isolated points.) Some contention exists on whether or not 0 should be classified as a limit ordinal, as it does not have an immediate predecessor; some textbooks include 0 in the class of limit ordinals while others exclude it. Because the class of ordinal numbers is well-ordered, there is a smallest infinite limit ordinal; denoted by ω (omega). The ordinal ω is also the smallest infinite ordinal (disregarding limit), as it is the least upper bound of the natural numbers.
Ola Nils Anders Svensson, Adam Teodor Polak, Buddhima Ruwanmini Gamlath Gamlath Ralalage, Xinrui Jia