Concept

Tetrahedrally diminished dodecahedron

In geometry, a tetrahedrally diminished dodecahedron (also tetrahedrally stellated icosahedron or propello tetrahedron) is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces (4 equilateral triangles and 12 identical quadrilaterals). A canonical form exists with two edge lengths at 0.849 : 1.057, assuming that the radius of the midsphere is 1. The kites remain isosceles. It has chiral tetrahedral symmetry, and so its geometry can be constructed from pyritohedral symmetry of the pseudoicosahedron with 4 faces stellated, or from the pyritohedron, with 4 vertices diminished. Within its tetrahedral symmetry, it has geometric varied proportions. By Dorman Luke dual construction, a unique geometric proportion can be defined. The kite faces have edges of length ratio ~ 1:0.633. Topologically, the triangles are always equilateral, while the quadrilaterals are irregular, although the two adjacent edges that meet at the vertices of a tetrahedron are equal. As a self-dual hexadecahedron, it is one of 302404 forms, 1476 with at least order 2 symmetry, and the only one with tetrahedral symmetry. As a diminished regular dodecahedron, with 4 vertices removed, the quadrilaterals faces are trapezoids. As a stellation of the regular icosahedron it is one of 32 stellations defined with tetrahedral symmetry. It has kite faces. In Conway polyhedron notation, it can represented as pT, applying George W. Hart's propeller operator to a regular tetrahedron. This polyhedron represents the vertex figure of a hyperbolic uniform honeycomb, the partially diminished icosahedral honeycomb, pd{3,5,3}, with 12 pentagonal antiprisms and 4 dodecahedron cells meeting at every vertex.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.