In geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.
It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex. In most contexts, the unqualified use of the word "icosahedron" refers specifically to this figure.
A regular icosahedron is a strictly convex deltahedron and a gyroelongated pentagonal bipyramid and a biaugmented pentagonal antiprism in any of six orientations.
The name comes . The plural can be either "icosahedrons" or "icosahedra" (-drə).
If the edge length of a regular icosahedron is , the radius of a circumscribed sphere (one that touches the icosahedron at all vertices) is
and the radius of an inscribed sphere (tangent to each of the icosahedron's faces) is
while the midradius, which touches the middle of each edge, is
where is the golden ratio.
The surface area and the volume of a regular icosahedron of edge length are:
The latter is F = 20 times the volume of a general tetrahedron with apex at the center of the
inscribed sphere, where the volume of the tetrahedron is one third times the base area times its height .
The volume filling factor of the circumscribed sphere is:
compared to 66.49% for a dodecahedron. A sphere inscribed in an icosahedron will enclose 89.635% of its volume, compared to only 75.47% for a dodecahedron.
The midsphere of an icosahedron will have a volume 1.01664 times the volume of the icosahedron, which is by far the closest similarity in volume of any platonic solid with its midsphere. This arguably makes the icosahedron the "roundest" of the platonic solids.
The vertices of an icosahedron centered at the origin with an edge length of 2 and a circumradius of are
where is the golden ratio.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
En géométrie euclidienne, un solide de Platon est l’un des cinq polyèdres à la fois réguliers et convexes. En référence au nombre de faces (4, 6, 8, 12 et 20) qui les composent, ils sont nommés couramment tétraèdre (régulier), hexaèdre (régulier) ou cube, octaèdre (régulier), dodécaèdre (régulier) et icosaèdre (régulier), les adjectifs « régulier » et « convexe » étant souvent implicites ou omis quand le contexte le permet. Depuis les mathématiques grecques, les solides de Platon furent un sujet d’étude des géomètres en raison de leur esthétique et de leurs symétries.
En géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
We present a novel method named truncated hierarchical unstructured splines (THU-splines) that supports both local h-refinement and unstructured quadrilateral meshes. In a THU-spline construction, an unstructured quadrilateral mesh is taken as the input co ...
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Berlin2024
, ,
In the CO2 reduction reaction, the design of electrocatalysts that selectively promote alcohols over hydrocarbons (e.g., ethanol over ethylene) hinges on the understanding of the pathways and specific sites that form alcohols. Herein, theoretical considera ...