vignette|504x504px|Un système de preuve interactive est composé de deux machines abstraites : un prouveur et un vérificateur qui s'échangent des messages. En théorie de la complexité des algorithmes, un système de preuve interactive est un protocole formel de démonstration de théorèmes qui fait intervenir deux participants qui échangent des messages. Cela permet de définir des classes de complexité intéressantes, notamment la classe IP qui est le modèle utilisé dans le théorème PCP qui caractérise la classe NP.
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
En informatique théorique, plus précisément en théorie de la complexité, P/poly est la classe de problèmes de décision décidés par une famille de circuits booléens de tailles polynomiales. Cette classe a été introduite par Karp et Lipton en 1980. Cette classe est importante, car comme P est incluse dans P/poly, si on démontre que NP ⊈ P/poly, alors on résout le problème ouvert P est différent de NP. Il y a deux définitions équivalentes, la première donnée avec le modèle de calcul des circuits booléens, l'autre avec des machines de Turing.
La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
En informatique, un algorithme de Las Vegas est un type d'algorithme probabiliste qui donne toujours un résultat correct ; son caractère aléatoire lui donne de meilleures performances temporelles en moyenne. Comme le suggère David Harel dans son livre d'algorithmique, ainsi que Motvani et Raghavan, le tri rapide randomisé est un exemple paradigmatique d'algorithme de Las Vegas.
vignette|Exemple circuit booléen à deux entrées et une sortie. Le circuit contient 3 portes logique. En théorie de la complexité, un circuit booléen est un modèle de calcul constitué de portes logiques (fonctions logiques) reliées entre elles. C'est une façon de représenter une fonction booléenne. Un circuit booléen peut être utilisé pour reconnaître un langage formel, c'est-à-dire décider si un mot appartient ou non à un langage particulier. Les caractéristiques des circuits qui reconnaissent un langage permettent de définir (ou redéfinir) des classes de complexité.