L'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
La contrainte d'intégralité sur les variables, qui différencie l'OLNE de l'optimisation linéaire classique est nécessaire pour modéliser certains problèmes, en particulier des problèmes algorithmiques. Mais cette contrainte supplémentaire rend le problème plus complexe et demande des techniques particulières.
Un problème d'optimisation est un problème mathématique où, étant donné un ensemble de variables et des contraintes sur ces variables, on doit trouver une assignation qui maximise (ou minimise) une certaine fonction de coût. On parle de problème linéaire lorsque les contraintes et la fonction de coût sont combinaisons linéaires des variables et le problème est à nombres entiers si ces variables ne sont autorisées qu'à prendre des valeurs dans l'ensemble des entiers.
La contrainte qui force les variables à prendre des valeurs entières est appelée contrainte d'intégralité. Lorsque l'on gomme cette contrainte, on parle d'un problème relaxé ou de relaxation continue, et l'on a alors affaire à un problème d'optimisation linéaire. Le rapport entre l'optimal dans la version relaxée et dans la version entière est souvent appelé integrality gap.
Un problème d'OLNE peut être mis sous deux formes classiques : la forme canonique et la forme standard.
La forme canonique pour une maximisation est :
et la forme standard est :
où sont des vecteurs et est une matrice ayant des valeurs entières.
On donne un exemple de problème d'OLNE, illustré par l'image ci-contre.
Il y a deux variables, les solutions sont donc des couples d'entiers. Les points rouges sont les couples qui vérifient les contraintes et les pointillés rouges montrent l'enveloppe convexe de ces points.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
The student will learn advanced concepts in the field of process integration, process modeling and optimization for the design of integrated energy systems: Life cycle energy analysis.
The course aims to introduce the basic concepts and results of integer optimization with special emphasis on algorithmic problems on lattices that have proved to be important in theoretical computer s
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
vignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.
Un algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
This advanced undergraduate course treats basic principles on linear programming like the simplex algorithm, its complexity, and duality. Furthermore it gives an introduction on discrete optimization
Explore les bases de la programmation linéaire, y compris les solutions de base, les solutions réalisables, les solutions optimales et les défis dans la résolution de problèmes de programmation entière.
Cutting plane methods are a fundamental approach for solving integer linear programs (ILPs). In each iteration of such methods, additional linear constraints (cuts) are introduced to the constraint set with the aim of excluding the previous fractional opti ...
2024
, ,
We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn- Triantafillou [Math. Comp. 91 (2021), pp. 491 ...
Amer Mathematical Soc2024
, ,
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...